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Goals

▶ Learn how to define functions
▶ How types help you while programming
▶ Syntax of Haskell
▶ How to define and use datatypes
▶ Overview of base types and datatypes
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Structure of a Haskell program

▶ Haskell programs comprise one or moremodules. One module
per file. Main module is always called Main .

▶ Modules consist of declarations. Declarations introduce
datatypes, functions and constants, type classes and instances.

▶ We will focus on functions and constants first, then datatypes.
Later type classes and instances.
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Declaring new functions and constants

length :: [a] -> Int
length [] = 0
length (x : xs) = 1 + length xs

▶ The name being introduced.
▶ Type signature (optional, but recommended).
▶ One or more equations defining the function.
▶ The = symbol separates the left hand sides from the right

hand sides.
▶ Cases are distinguished by patterns.
▶ On the right hand side, we have expressions.
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Declarations, patterns, expressions

Informally:

▶ A (function or constant) declaration binds a (new) identifier to an
expression.

▶ A pattern occurs as an argument to an identifier on the left hand
side of a declaration. It introduces names that are available on
the right hand side. Patterns can be matched against actual
function arguments. Matches can fail or succeed.

▶ Expressions occur on the right hand side of a function definition.
Expressions can be evaluated.
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Types

Every expression must have a type in Haskell – otherwise it will be
rejected by the compiler:

▶ Haskell types can be inferred. There’s usually no need for type
annotations.

▶ Use :t in GHCi to obtain the inferred type of an expression.
▶ Type annotations (using :: ) are optional. But if they’re given,

their correctness is checked.
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How to define a function?

There are two main design principles for defining functions:

▶ by (systematic) pattern matching and recursion,

▶ by applying a higher-order function (such as composition, map ,

foldr , . . .) and thereby reducing the problem to smaller
subproblems.

In both cases, thinking about the types first helps you!

We will focus on the pattern matching approach first.
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Functions on lists

Most functions operate on structured data.

Lists are a simple data structure, so they’re ideal for learning.

Recall from the Quick Tour

Lists are defined inductively:
▶ The empty list [] is a list.
▶ Given a single element y and a list ys , we can construct a new

list y : ys (pronounced y cons ys ).

We call [] and (:) the constructors of the list datatype.
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: Int -> [Int] -> Bool

We start with the type.

Do we want to restrict ourselves to Int lists? No!
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: a -> [a] -> Bool

Let’s make as few assumptions as possible.

In order to split up the programming problem, let’s take a look at the
input list . . .
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: a -> [a] -> Bool
elem x [] = ...
elem x (y : ys) = ...

There are two cases, one per constructor of the list datatype.

Let’s see if we can solve the simple case for [] .
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = ...

Now to the cons-case.

The ys is a shorter list – the most natural way to define functions on
recursive datatypes is to use recursive functions.
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = ... elem ys ...

Let’s try to complete the second case making use of the recursive call.
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

Done?
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

Oh, we actually need equality on the elements. That seems to be a
sensible requirement for elem , so let’s refine the type . . .
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

Now we’re really done.
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Another look at elem

Let’s try to implement elem once more, systematically.

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

The systematic development we’ve just seen generalizes to most
functions on lists and most functions on other structured datatypes.
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Mapping over a list

map :: (a -> b) -> [a] -> [b]

Start with the type. A function is like any other argument.
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Mapping over a list

map :: (a -> b) -> [a] -> [b]
map f [] = ...
map f (x : xs) = ...

Introduce cases based on the list constructors.
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Mapping over a list

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = ...

Solve the simple case first.

Well-Typed



Mapping over a list

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = ... map f xs ...

Keep recursion in mind.
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Mapping over a list

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

As f is a function, we can apply it.

Take a final look.

Everything looks fine.
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Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]

Well-Typed



Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = ...
drop n (x : xs) = ...

What do we actually want to do if we want to drop 3 elements of an
empty list?
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Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = []
drop n (x : xs) = ...

We take a simple approach.
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Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = []
drop n (x : xs) = ... drop ... xs ...

Wait, but what we want to do depends on n ?

We have multiple options here . . .
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Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = []
drop 0 (x : xs) = ... drop ... xs ...
drop n (x : xs) = ... drop ... xs ...

We can pattern match on an Int too . . .

If cases overlap, the first matching case applies.
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Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = []
drop 0 (x : xs) = x : xs
drop n (x : xs) = ... drop ... xs ...

Sometimes, we don’t need to recurse – even though we could.

Well-Typed



Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = []
drop 0 (x : xs) = []
drop n (x : xs) = drop (n - 1) xs

Done.

But what happens with negative numbers as arguments?
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Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = []
drop n (x : xs) =
if n <= 0
then x : xs
else drop (n - 1) xs

We can use if - then - else .

We can include negative numbers now.

If an equation spans multiple lines, the subsequent lines must be
indented with respect to the first.
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Another example: drop elements from a list

The call drop n xs should remove the first n elements from xs .

drop :: Int -> [a] -> [a]
drop n [] = []
drop n (x : xs)

| n <= 0 = x : xs
| otherwise = drop (n - 1) xs

Yet another option: use so-called guards.

Can only appear directly after the pattern match. Boolean conditions
are tried in order, otherwise is just a constant that is defined to be
True .
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Exercise – define the following functions

Append two lists:

(++) :: [a] -> [a] -> [a]

Hint: Only pattern match on the first list (i.e., don’t distinguish more
cases than needed).

Reverse a list:

reverse :: [a] -> [a]

Hint: Follow the standard pattern, and make use of (++) that you
have just defined.
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Excursion: infix operators

Haskell allows you to create your own operators from a given set of
symbols:

▶ names are either completely symbolic or completely
alphanumeric;

▶ symbolic names are by default used infix, but can be used in
prefix notation by surrounding them in parentheses (Example:
(+) 2 3 evaluates to 5 );

▶ alphanumeric names are by default used prefix, but can be used
in infix notation by surrounding them in backquotes (Example:
8 `mod` 3 evaluates to 2 );

▶ you can define the associativity and priority of infix operators by
using infix , infixl , and infixr declarations;

▶ by using :i or :info in GHCi, you can obtain information
about the priority of infix operators.
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Next: filter ing a list

We want to traverse a list and keep all elements that have a certain
property.

Question

How to best express a property of an element?

As a function from the element to a Bool .

Recall from the Quick Tour: a Bool is a another datatype with two
constructors, called True and False .

Well-Typed



Next: filter ing a list

We want to traverse a list and keep all elements that have a certain
property.

Question

How to best express a property of an element?

As a function from the element to a Bool .

Recall from the Quick Tour: a Bool is a another datatype with two
constructors, called True and False .

Well-Typed



Next: filter ing a list

We want to traverse a list and keep all elements that have a certain
property.

Question

How to best express a property of an element?

As a function from the element to a Bool .

Recall from the Quick Tour: a Bool is a another datatype with two
constructors, called True and False .

Well-Typed



Defining filter

filter :: (a -> Bool) -> [a] -> [a]

We can now write down the type.
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Defining filter

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = ...
filter p (x : xs) = ... filter ... xs ...
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Defining filter

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x : xs) = ... filter ... xs ...

It depends on the outcome of p x what we want to do!

We have several options here.

Well-Typed



Defining filter

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

We can use the built-in if - then - else construct.

Note that Bool is a type like any other. No need to write
p x == True . Plain p x is simpler and equivalent.
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Defining filter

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x : xs)

| p x = x : filter p xs
| otherwise = filter p xs

We can also use guards – each guard is tried in order.

Note that

otherwise :: Bool
otherwise = True
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Using filter

There are some useful predicates:

even, odd :: Integral a => (a -> Bool)
isUpper, isDigit :: Char -> Bool

We can also define our own:

positiveInt :: Int -> Bool
positiveInt n = n > 0

palindrome :: [Char] -> Bool
palindrome xs = reverse xs == xs

Note that String is a (type) synonym for [Char] .

Try using filter with these predicates.
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Excursion: anonymous functions

In practice, functions such as filter are often used with lambda
expressions or anonymous functions:

filter (\ n -> n > 10 && even n) [1 . . 100]

A lambda expression is a way to define a function without giving it a
name:

myPredicate n = n > 10 && even n

is just different syntax for

myPredicate = \ n -> n > 10 && even n
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Excursion: operator sections

Partially applied infix operators have yet again special syntax:

\ n -> n > 10

can be abbreviated to

(> 10)

Similarly, we can write (1 +) or ("Hello " ++) or (`div` 5) .

So it’s possible to say

filter (> 10) [1 . . 100]
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Lists vs. tuples

It’s time to talk about a new (family of) datatypes: tuples.

▶ lists are a datatype that collects an arbitrary number of elements;
all elements must be of the same type.

▶ tuples are a family of datatypes that collect a fixed number of
elements; each element can have a different type.

Let’s look at examples.
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Example tuples

Pairing a Bool and a String :

example :: (Bool, String)
example = (True, "yes, it's true")

▶ The type states it is a pair, and also states the type of each
component.

▶ The corresponding expression has similar syntax, and constructs
a pair out of two components.

Here’s a triple:

triple :: ([a] -> [a], [b] -> Int, Char)
triple = (reverse, length, 'x')
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General structure of tuples

For each n >= 2 , there’s a type of n -tuples.

▶ Each of these is a different type.
▶ Unlike lists (or Bool ), each tuple type has a single constructor,

conveniently written using parentheses and commas, with the
arguments interspersed (it can also be used in prefix notation,
actually).

▶ We can use pattern matching to extract the components of a
tuple (but we do not need to distinguish several cases).

Remarks:

▶ There are no 1-tuples. Haskell treats (Int) and Int as the
same type.

▶ The unit type () can be seen as a 0-tuple.
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Example: selecting the first component of a pair

fst :: ...

What is the type here?

fst :: (Int, Char) -> Int

is certainly too specific . . .
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Example: selecting the first component of a pair

fst :: (a, b) -> a

We can accept arbitrary component types. The two components can
have different types. But the result type matches the type of the first
component.

Now let’s apply pattern matching on the input.
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Example: selecting the first component of a pair

fst :: (a, b) -> a
fst (x, y) = ...

Now x is the component of type a , and y the component of type

b .

It’s nearly trivial to finish the definition.
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Example: selecting the first component of a pair

fst :: (a, b) -> a
fst (x, y) = x

And we are done.

Well-Typed



Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]

We start with the type.

It’s a function over (two) lists, so let’s apply the standard principle to
the first list.
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Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]
zip [] ys = ...
zip (x : xs) ys = ... zip xs ...

We actually need to look at the second list, too. So let’s just match on
that one as well.
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Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]
zip [] [] = ...
zip [] (y : ys) = ...
zip (x : xs) [] = ...
zip (x : xs) (y : ys) = ... zip xs ys ...

The first case is easy: if both lists are empty, we return the empty list.
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Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]
zip [] [] = []
zip [] (y : ys) = ...
zip (x : xs) [] = ...
zip (x : xs) (y : ys) = ... zip xs ys ...

In the final case, we can produce the first element of the resulting list
and recurse.
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Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]
zip [] [] = []
zip [] (y : ys) = ...
zip (x : xs) [] = ...
zip (x : xs) (y : ys) = (x, y) : zip xs ys

In the other two cases, there’s a bit of flexibility:

▶ We could fail, yielding a partial function.
▶ But we can also just agree to return the shorter list.
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Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]
zip [] [] = []
zip [] (y : ys) = []
zip (x : xs) [] = []
zip (x : xs) (y : ys) = (x, y) : zip xs ys

This definition has the advantage that we can use an infinite list as one
argument:

zip [1 . .] listOfNames
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Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]
zip (x : xs) (y : ys) = (x, y) : zip xs ys
zip xs ys = []

We can actually collapse the first three cases into one, but now the
order of patterns matters.

Simple variables match everything.
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Zipping two lists

Sometimes, we have two lists of equal length and want to combine
them element by element:

zip :: [a] -> [b] -> [(a, b)]
zip (x : xs) (y : ys) = (x, y) : zip xs ys
zip _ _ = []

Pattern variables that are not used on the right hand side can be
replaced by underscores.
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Association lists

A list of pairs serves as a primitive way to associate keys with values.

numbers :: [(Int, String)]
numbers = [(1, "one"), (5, "five"), (42, "forty-two")]

Let’s try to write a lookup function that obtains the value associated
with a particular key . . .
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A list of pairs serves as a primitive way to associate keys with values.

numbers :: [(Int, String)]
numbers = [(1, "one"), (5, "five"), (42, "forty-two")]

Let’s try to write a lookup function that obtains the value associated
with a particular key . . .
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Defining lookup – “bad” version

lookup :: key -> [(key, val)] -> val

A first approximation of the type.

Let’s analyze the input list.
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Defining lookup – “bad” version

lookup :: key -> [(key, val)] -> val
lookup x [] = ...
lookup x (y : ys) = ... lookup ... ys ...

What val can we return if we reach the empty list and haven’t found
our key?
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Defining lookup – “bad” version

lookup :: key -> [(key, val)] -> val
lookup x [] = error "lookup: unknown key"
lookup x (y : ys) = ... lookup ... ys ...

A bad solution is to trigger a run-time exception. We’ll improve on that
shortly.

For the other case, we have to look at the first pair . . .
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Defining lookup – “bad” version

lookup :: key -> [(key, val)] -> val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys) = ... lookup ... ys ...

Now we have to compare x and k . Let’s use guards.
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Defining lookup – “bad” version

lookup :: key -> [(key, val)] -> val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys)

| x == k = ... lookup ... ys ...
| otherwise = ... lookup ... ys ...

If we found the key, we can immediately return the value. (So what will
happen if the key occurs multiple times?)
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Defining lookup – “bad” version

lookup :: key -> [(key, val)] -> val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys)

| x == k = v
| otherwise = ... lookup ... ys ...

In the remaining case, we simply recurse.
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Defining lookup – “bad” version

lookup :: key -> [(key, val)] -> val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys)

| x == k = v
| otherwise = lookup x ys

Let’s take a final look. Oh, we need equality on the key type . . .
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Defining lookup – “bad” version

lookup :: Eq key => key -> [(key, val)] -> val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys)

| x == k = v
| otherwise = lookup x ys

Now we’re done, apart from the ugly call to error .
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Excursion: about error and undefined

A call to error (as well as a function call for which no pattern match
succeeds) causes a run-time exception.

error :: String -> a
undefined :: a

Note that these are polymorphic in the result type. This means they
can be used in any context, because they abort normal control flow.
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succeeds) causes a run-time exception.

error :: String -> a
undefined :: a

Note that these are polymorphic in the result type. This means they
can be used in any context, because they abort normal control flow.
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Excursion: total and partial functions

▶ A function that can trigger a run-time exception or that may loop
is called a partial function.

▶ Writing and using partial functions is discouraged – always try to
cover all cases and make your functions total.

▶ However, undefined and error can be useful tools while
incrementally developing a program.
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▶ Writing and using partial functions is discouraged – always try to
cover all cases and make your functions total.
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Maybe



How to fix lookup

We need a disciplined way to express failure without crashing.

Idea

Let’s use a different result type for lookup , containing one additional

value called Nothing to express failure.
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We need a disciplined way to express failure without crashing.

Idea

Let’s use a different result type for lookup , containing one additional

value called Nothing to express failure.
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The Maybe datatype

Given a type a , the type Maybe a contains all the values of type a
plus one additional value:

▶ the term Nothing is a value of type Maybe a ,

▶ if x is of type a , then Just x is of type Maybe a .

There are two shapes / constructors of the Maybe datatype:

Nothing and Just .
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The Maybe datatype

Given a type a , the type Maybe a contains all the values of type a
plus one additional value:

▶ the term Nothing is a value of type Maybe a ,

▶ if x is of type a , then Just x is of type Maybe a .

There are two shapes / constructors of the Maybe datatype:

Nothing and Just .
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Defining lookup – “good” version

lookup :: Eq key => key -> [(key, val)] -> val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys)

| x == k = v
| otherwise = lookup x ys

This is the version we had before.
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Defining lookup – “good” version

lookup :: Eq key => key -> [(key, val)] -> Maybe val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys)

| x == k = v
| otherwise = lookup x ys

We are now adapting the result type.

This requires changes in the rest of the function.
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Defining lookup – “good” version

lookup :: Eq key => key -> [(key, val)] -> Maybe val
lookup x [] = error "lookup: unknown key"
lookup x ((k, v) : ys)

| x == k = v
| otherwise = lookup x ys

The first of the right hand sides can be improved now. The other is no
longer type correct.
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Defining lookup – “good” version

lookup :: Eq key => key -> [(key, val)] -> Maybe val
lookup x [] = Nothing
lookup x ((k, v) : ys)

| x == k = v -- still wrong
| otherwise = lookup x ys

Instead of using error , we can now return Nothing .
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Defining lookup – “good” version

lookup :: Eq key => key -> [(key, val)] -> Maybe val
lookup x [] = Nothing
lookup x ((k, v) : ys)

| x == k = Just v
| otherwise = lookup x ys

To inject v into the Maybe type, we use Just .
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Defining lookup – “good” version

lookup :: Eq key => key -> [(key, val)] -> Maybe val
lookup x [] = Nothing
lookup x ((k, v) : ys)

| x == k = Just v
| otherwise = lookup x ys

Done. This version of lookup is total.

It does not crash, but the type tells the user that Nothing may be
returned, and forces the caller to deal with it.
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Handling exceptions with Maybe

Given a default value, we can always recover a value from a Maybe :

fromMaybe :: a -> Maybe a -> a
fromMaybe def x = ...

We pattern match on the Maybe .

Two constructors, Nothing and Just .
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Handling exceptions with Maybe

Given a default value, we can always recover a value from a Maybe :

fromMaybe :: a -> Maybe a -> a
fromMaybe def Nothing = ...
fromMaybe def (Just x) = ...

We use the default value in the Nothing case, and the wrapped
value in the other.
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Handling exceptions with Maybe

Given a default value, we can always recover a value from a Maybe :

fromMaybe :: a -> Maybe a -> a
fromMaybe def Nothing = def
fromMaybe def (Just x) = x

Done.
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Combining Maybe computations

We can provide a “backup” computation for a possibly failing
computation.

(<|>) :: Maybe a -> Maybe a -> Maybe a
x <|> y = ...

We pattern match on the first input.
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Combining Maybe computations

We can provide a “backup” computation for a possibly failing
computation.

(<|>) :: Maybe a -> Maybe a -> Maybe a
Nothing <|> y = ...
Just x <|> y = ...

We take the second computation if the first fails, otherwise ignore it.
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Combining Maybe computations

We can provide a “backup” computation for a possibly failing
computation.

(<|>) :: Maybe a -> Maybe a -> Maybe a
Nothing <|> y = y
Just x <|> y = Just x

Done.

Note the similarity with (||) on Booleans (from the Quick Tour).
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A variant of filter for Maybe

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe p [] = []
mapMaybe p (x : xs) = ... mapMaybe p xs ...

We get to this point, but now we have to inspect the result of p x .

We could define a helper function, but we can also use a case
expression . . .
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A variant of filter for Maybe

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe p [] = []
mapMaybe p (x : xs) =
case p x of
Nothing -> ... mapMaybe p xs ...
Just y -> ... mapMaybe p xs ...

With case , we can pattern match on the result of an expression.

Note that the left hand sides are separated from the right hand sides
with an arrow ( -> ) and not an equality sign ( = ).
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A variant of filter for Maybe

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe p [] = []
mapMaybe p (x : xs) =
case p x of
Nothing -> mapMaybe p xs
Just y -> y : mapMaybe p xs

We can complete the definition similarly to filter .

Everything looks fine now.
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Why Maybe ?

▶ By using Maybe in a result, we can express explicitly that the
function can fail.

▶ The caller has to address the potential failure.
▶ By using Maybe in an argument, we can express that an

argument is optional.
▶ The function writer has to say what to do if Nothing is passed.

▶ Only Maybe types have Nothing . This is different from null
in other languages. There are no “null pointer exceptions” in
Haskell.
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Datatypes



Parameterized types, type constructors

▶ In Haskell, many types are parameterized by others.
▶ From existing types, we can make new types.
▶ Parameterized types are often called type constructors.

Examples:

“List” is a type constructor.

Given any type a , there is also a type [a] .

“Pair” is a type constructor.

Given any types a and b , there is also a type (a, b) .

“Function” is a type constructor.

Given any types a and b , there is also a type a -> b .
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Building types with type constructors

There are no limits to composing type constructors:

([Int -> Bool -> Int], [[Double]] -> (Bool, Int))

There are arbitrarily many type constructors, because we can define
our own!
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Building types with type constructors

There are no limits to composing type constructors:

([Int -> Bool -> Int], [[Double]] -> (Bool, Int))

There are arbitrarily many type constructors, because we can define
our own!
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Defining data types



New datatypes with the data construct

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su

This is an enumeration type. There are 7 constructors:

Mo, Tu, We, Th, Fr, Sa, Su :: Weekday

data Date = D Int Int Int -- year, month, day

This is a record type. It has a single constructor:

D :: Int -> Int -> Int -> Date
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Mo, Tu, We, Th, Fr, Sa, Su :: Weekday

data Date = D Int Int Int -- year, month, day

This is a record type. It has a single constructor:

D :: Int -> Int -> Int -> Date

Well-Typed



(Data) Constructors

Mo :: Weekday
D :: Int -> Int -> Int -> Date
False :: Bool
(:) :: a -> [a] -> [a]
(,) :: a -> b -> (a, b)
Just :: a -> Maybe a

▶ Constructors are constants or functions that can be used to
construct terms on the right hand side of a declaration.

▶ They have types targetting the datatype they belong to.
▶ Constructors determine the shape of values – they are not

reduced, but evaluate to themselves.
▶ We can pattern-match on constructors (and not on ordinary

constants or functions).
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Datatypes yield programming patterns

From the datatype definition, we can read off the standard design
principle for functions over the datatype:

▶ For each constructor, make a case.
▶ Use the arguments of the constructor on the right hand side.
▶ Whenever the datatype is recursive, consider making the function

recursive.
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Booleans

data Bool = False | True

An enumeration type, like Weekday .

Two constructors, no recursion.

Example functions:

not :: Bool -> Bool
not False = True
not True = False

(&&) :: Bool -> Bool -> Bool
(&&) True True = True
(&&) _ _ = False
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Booleans

data Bool = False | True

An enumeration type, like Weekday .
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Example functions:
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Tuples

data (a, b) = (a, b)
data (a, b, c) = (a, b, c)

Parameterized. One constructor each. No recursion. Built-in syntax.

We could define our own, with less convenient syntax:

data Pair a b = MakePair a b
data Triple a b c = MakeTriple a b c

Example functions:

secondOfThree :: (a, b, c) -> b
secondOfThree (x, y, z) = y

secondOfThree' :: Triple a b c -> b
secondOfThree' (MakeTriple x y z) = y
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Tuples

data (a, b) = (a, b)
data (a, b, c) = (a, b, c)

Parameterized. One constructor each. No recursion. Built-in syntax.

We could define our own, with less convenient syntax:

data Pair a b = MakePair a b
data Triple a b c = MakeTriple a b c

Example functions:

secondOfThree :: (a, b, c) -> b
secondOfThree (x, y, z) = y

secondOfThree' :: Triple a b c -> b
secondOfThree' (MakeTriple x y z) = y
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Maybe

data Maybe a = Nothing | Just a

Parameterized. Two constructors. No recursion.

Example function:

fromMaybe :: a -> Maybe a -> a
fromMaybe def Nothing = def
fromMaybe def (Just x) = x
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Maybe

data Maybe a = Nothing | Just a

Parameterized. Two constructors. No recursion.

Example function:

fromMaybe :: a -> Maybe a -> a
fromMaybe def Nothing = def
fromMaybe def (Just x) = x
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Lists

data [a] = [] | a : [a]

Parameterized. Two constructors. Recursive. Built-in syntax.

We could define our own, with less convenient syntax.

data List a = Nil | Cons a (List a)

We have seen lots of example functions following the standard design
principle.
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The data construct

The syntax of the data construct:

data Type arg1...argm = Con1 ty1 ... tyn
| Con2 ...
| ...

Introduces the new datatype Type and the data constructors Con1 ,

Con2 , ... .

Types of constructors are determined by the data declaration:

Con1 :: ty1 -> ... -> tyn -> Type arg1 ... argm

Type and constructor names must start with an uppercase letter;
symbolic infix constructors must start with a colon ( : ). Lists and
tuples support additional built-in syntax that cannot be used for other
datatypes.
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Applying the design principle

Also for new datatypes, always keep in mind that by looking at the
datatype, you obtain a design principle for functions over that type:

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su
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Applying the design principle

Also for new datatypes, always keep in mind that by looking at the
datatype, you obtain a design principle for functions over that type:

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su

isWeekend :: Weekday -> Bool
isWeekend Mo = False
isWeekend Tu = False
isWeekend We = False
isWeekend Th = False
isWeekend Fr = False
isWeekend Sa = True
isWeekend Su = True
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Applying the design principle

Also for new datatypes, always keep in mind that by looking at the
datatype, you obtain a design principle for functions over that type:

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su

isWeekend :: Weekday -> Bool
isWeekend Sa = True
isWeekend Su = True
isWeekend _ = False

Collapsing cases – the order of cases then matters!
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Another example

data Date = D Int Int Int -- year, month, day

One constructor. No recursion.

Example function:

valid :: Date -> Bool
valid (D y m d) =
m >= 1 && m <= 12 && d >= 1 && d <= 31

Of course, this is not an optimal definition.
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Type synonyms with type

Often, for datatypes with a single constructor, the constructor is
named the same as the datatype itself:

data Date = Date Int Int Int

It’s often better to give more meaningful names to types without
creating a completely new type:

type Year = Int
type Month = Int
type Day = Int

data Date = Date Year Month Day

Note that type introduces type synonyms. For example,

2 :: Year and 2 :: Int . No conversion function is required.
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Renamed types with newtype

We could also define:

data Year = Year Int

Now Year and Int are different:

Year :: Int -> Year -- the constructor

To extract the Int from a year, we can use pattern matching:

fromYear :: Year -> Int
fromYear (Year n) = n

For the case of a single-constructor, single-argument datatype (i.e., a
renamed type), there’s a more efficient construct:

newtype Year = Year Int
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Lessons

▶ Let the types guide you.
▶ Use pattern matching to get at components of values, and to

distinguish cases.
▶ Try to follow the recursive structure of types (lists, trees).
▶ Cover all cases.
▶ Use precise types, such as Maybe , rather than causing

uncontrolled errors.
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