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Accumulators



Efficiency of reverse

Let’s look at the standard solutions for (++) and reverse earlier:

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

reverse :: [a] -> [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

What is the efficiency of reverse ?

Answer: it has quadratic complexity, as (++) is linear in its left

argument and reverse reduces to a linear chain of (++)
invocations.
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A better reverse

Let’s build the reversed list as we go in an additional, accumulating
argument:

reverseAcc :: [a] -> [a] -> [a]
reverseAcc acc [] = acc
reverseAcc acc (x : xs) = reverseAcc (x : acc) xs

reverse :: [a] -> [a]
reverse = reverseAcc []

Note:

▶ we need the extra creative step to move from reverse to
reverseAcc ,

▶ but the function reverseAcc uses the standard design principle
for lists again;

▶ we now traverse the list only once.
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Accumulators in general

We have seen that reverse benefits significantly from introducing
an accumulator.

Can the same idea be applied elsewhere?
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The sum function

Applying the standard design pattern:

sum :: [Int] -> Int
sum [] = 0
sum (x : xs) = x + sum xs

Trying in GHCi with artificially limited stack size (ghci +RTS -K1M):

GHCi> sum [1 . . 100000]
*** Exception: stack overflow

Why is the function consuming so much stack space?
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Equational reasoning

sum [1, 2, 3]

= sum (1 : 2 : 3 : []) -- removing syntactic sugar

= 1 + sum (2 : 3 : []) -- by definition of sum

= 1 + (2 + sum (3 : [])) -- by definition of sum

= 1 + (2 + (3 + sum [])) -- by definition of sum

= 1 + (2 + (3 + 0)) -- by definition of sum

= 1 + (2 + 3) -- by definition of (+)

= 1 + 5 -- by definition of (+)

= 6 -- by definition of (+)

We build an entire right-nested chain of additions until we reach the
end of the list. Only then can we start reducing them.
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An accumulator for the sum?

Can an accumulator help? Let’s try:

sumAcc :: Int -> [Int] -> Int
sumAcc acc [] = acc
sumAcc acc (x : xs) = sumAcc (x + acc) xs

sum :: [Int] -> Int
sum = sumAcc 0

Trying in stack-limited GHCi again:

GHCi> sum [1 . . 100000]
*** Exception: stack overflow
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More equational reasoning
sum [1, 2, 3]

= sum (1 : 2 : 3 : []) -- removing syntactic sugar

= sumAcc 0 (1 : 2 : 3 : []) -- by definition of sum

= sumAcc (0 + 1) (2 : 3 : []) -- by definition of sumAcc

= sumAcc ((0 + 1) + 2) (3 : []) -- by definition of sumAcc

= sumAcc (((0 + 1) + 2) + 3) [] -- by definition of sumAcc

= ((0 + 1) + 2) + 3 -- by definition of sumAcc

= (1 + 2) + 3 -- by definition of (+)

= 3 + 3 -- by definition of (+)

= 6 -- by definition of (+)

= 1 + (2 + (3 + sum [])) -- by definition of sum

= 1 + (2 + (3 + 0)) -- by definition of sum

= 1 + (2 + 3) -- by definition of (+)

= 1 + 5 -- by definition of (+)

= 6 -- by definition of (+)
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The problem

We build the expression

sumAcc (0 + 1) (2 : 3 : [])

Perhaps surprisingly, 0 + 1 is not reduced, because it is not needed
until much later.

We therefore build a (left-nested) chain of additions again until we
reach the end of the list . . .

Accumulators are problematic in a lazy evaluation scenario: we
update them often, but do not really need them evaluated for a long
time.

Perhaps we can provide a hint to the compiler that we want this
evaluated sooner?
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Making the accumulator strict with bang patterns

sumAcc :: Int -> [Int] -> Int
sumAcc !acc [] = acc
sumAcc !acc (x : xs) = sumAcc (x + acc) xs

sum :: [Int] -> Int
sum = sumAcc 0

Note that we write !acc now. A bang pattern means that GHC will
evaluate the passed value to its outermost constructor (but only to
that!) even though the pattern is just a variable and would normally
match without evaluation.

For an Int , evaluating to the outermost constructor means
evaluating it completely.
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Bang patterns language extension

Bang patterns require the BangPatterns language extension, which
can be enabled via a compiler pragma:

{-# LANGUAGE BangPatterns #-}

at the top of the file.
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Problem fixed

In our stack-restricted GHCi:

GHCi> sum [1 . . 100000]
5000050000

Or even:

GHCi> sum [1 . . 10000000]
50000005000000

This version of sum actually runs in constant space.

The equational reasoning is similar to the previous accumulating
version, only that the accumulator is now evaluated immediately on
every update.
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Make accumulators strict

Accumulators should nearly always be strict.

Make them strict by default.

There are few situations (such as reverse ) where strictness of the
accumulator is not required, but even there it is not harmful.
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Always accumulators?

No!

The accumulating parameter pattern always has to traverse the entire
list before producing a result! It cannot stop early or produce results
incrementally. It can also not work for infinite lists:

GHCi> and (False : repeat True)
False

GHCi> take 10 (map (+ 1) [1 . . 10])
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Both of these functions should be defined using the standard design
pattern for lists – without an accumulator – to enable the behaviour
observed above.
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Capturing design patterns



Abstraction

One of the strengths of Haskell’s flexibility with functions is that they
really allow to abstract from reoccuring patterns and thereby save
code.

The standard design principle for lists we’ve been using all the time
works as follows:

fun :: [someType] -> someResult
fun [] = ... -- code
fun (x : xs) = ... -- code that can use x and fun xs
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From an informal pattern to a function

fun :: [someType] -> someResult
fun [] = ... -- code
fun (x : xs) = ... -- code that can use x and fun xs

We have two interesting positions where we have to fill in
situation-specific code. Let’s abstract!
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From an informal pattern to a function

fun :: [someType] -> someResult
fun [] = nil
fun (x : xs) = cons x (fun xs)

▶ We give names to the cases that correspond to the constructors.
▶ The case cons can use x and fun xs , so we turn it into a

function.
▶ At the moment, this is not a valid function, because nil and

cons come out of nowhere – but we can turn them into
parameters of fun !
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From an informal pattern to a function

fun :: ... -> ... -> [someType] -> someResult
fun cons nil [] = nil
fun cons nil (x : xs) = cons x (fun cons nil xs)

We now have to look at the types of cons and nil :
▶ nil is used as a result, so nil :: someResult ;
▶ cons takes a list element and a result to a result, so

cons :: someType -> someResult -> someResult .
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From an informal pattern to a function

fun :: (someType -> someResult -> someResult)
-> someResult
-> [someType] -> someResult

fun cons nil [] = nil
fun cons nil (x : xs) = cons x (fun cons nil xs)

We can give shorter names to someType and someResult . . .
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From an informal pattern to a function

fun :: (a -> r -> r) -> r -> [a] -> r
fun cons nil [] = nil
fun cons nil (x : xs) = cons x (fun cons nil xs)

This function is called foldr . . .
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From an informal pattern to a function

foldr :: (a -> r -> r) -> r -> [a] -> r
foldr cons nil [] = nil
foldr cons nil (x : xs) = cons x (foldr cons nil xs)

We could equivalently define it using where . . .
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From an informal pattern to a function

foldr :: (a -> r -> r) -> r -> [a] -> r
foldr cons nil = go
where
go [] = nil
go (x : xs) = cons x (go xs)

The arguments cons and nil never change while traversing the
list, so we can just refer to them in the local definition go , without
explicitly passing them around.

Well-Typed



Using foldr

length :: [a] -> Int
length [] = 0
length (x : xs) = 1 + length xs

foldr :: (a -> r -> r) -> r -> [a] -> r
foldr cons nil = go
where
go [] = nil
go (x : xs) = cons x (go xs)

length = foldr (\ x r -> 1 + r) 0

or (using const and an operator section)

length = foldr (const (1 +)) 0
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Examples of using foldr

(++) :: [a] -> [a] -> [a]
(++) xs ys = foldr (:) ys xs

filter :: (a -> Bool) -> [a] -> [a]
filter p = foldr (\ x r -> if p x then x : r else r) []

map :: (a -> b) -> [a] -> [b]
map f = foldr (\ x r -> f x : r) []

and :: [Bool] -> Bool
and = foldr (&&) True

any :: (a -> Bool) -> [a] -> Bool
any p = foldr (\ x r -> p x || r) False

And many more.

Well-Typed



Examples of using foldr

(++) :: [a] -> [a] -> [a]
(++) xs ys = foldr (:) ys xs

filter :: (a -> Bool) -> [a] -> [a]
filter p = foldr (\ x r -> if p x then x : r else r) []

map :: (a -> b) -> [a] -> [b]
map f = foldr (\ x r -> f x : r) []

and :: [Bool] -> Bool
and = foldr (&&) True

any :: (a -> Bool) -> [a] -> Bool
any p = foldr (\ x r -> p x || r) False

And many more.

Well-Typed



The role of foldr

▶ When a list function is easy to express using foldr , then you
should.

▶ Makes it immediately recognizable for the reader that it follows
the standard design principle.

▶ Some functions can be expressed using foldr , but that does
not necessarily make them any clearer. In such cases, aim for
clarity.
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Accumulating parameter pattern

reverse :: [a] -> [a]
reverse = go []
where
go !acc [] = acc
go !acc (x : xs) = go (x : acc) xs

sum :: Num a => [a] -> a
sum = go 0
where
go !acc [] = acc
go !acc (x : xs) = go (x + acc) xs

See something to abstract here?
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Abstracting

fun :: [a] -> r
fun = go ...
where
go !acc [] = acc
go !acc (x : xs) = go (... acc ... x ...) xs

We apply the same tactics as before: let’s abstract from the interesting
positions and introduce names.
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Abstracting

fun :: [a] -> r
fun = go e
where
go !acc [] = acc
go !acc (x : xs) = go (op acc x) xs

Now we need to introduce e and op as parameters.
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Abstracting

fun :: ... -> ... -> [a] -> r
fun op e = go e
where
go !acc [] = acc
go !acc (x : xs) = go (op acc x) xs

And we have to figure out the types (or let the compiler infer them).
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Abstracting

fun :: (r -> a -> r) -> r -> [a] -> r
fun op e = go e
where
go !acc [] = acc
go !acc (x : xs) = go (op acc x) xs

This function is called foldl' (in the module Data.List ).
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Abstracting

foldl' :: (r -> a -> r) -> r -> [a] -> r
foldl' op e = go e
where
go !acc [] = acc
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This function is called foldl' (in the module Data.List ).
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foldr and foldl'

foldr (⊕) e [x, y, z] = x ⊕ (y ⊕ (z ⊕ e))

foldl' (⊕) e [x, y, z] = ((e ⊕ x) ⊕ y) ⊕ z

Performance advice

There’s a function foldl with the same type as foldl' , which
does not have the strict accumulator and should therefore almost
never be used!
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Higher-order functions



Functions, functions, functions

A function parameterized by another function or returning a function
is called a higher-order function.

Currying

Strictly speaking, every curried function in Haskell is a function
returning another function:

elem :: Eq a => a -> ([a] -> Bool)
elem 3 :: (Eq a, Num a) => [a] -> Bool
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Filtering and mapping

Two of the most useful list functions are higher-order, as they each
take a function as an argument:

filter :: (a -> Bool) -> [a] -> [a]

map :: (a -> b) -> [a] -> [b]

The use of a function a -> Bool to express a predicate is generally
common. And mapping a function over a data structure is an
operation that isn’t limited to lists.
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Folds

The functions foldr and foldl' are among the most general
higher-order functions on lists. Nearly any other list function can be
expressed in terms of them.

Some rules of thumb:

▶ If a more specific function applies (such as filter or map ),
use that.

▶ If a function becomes more readable by using a fold, then use it.
It has the advantage that it also signals to the programmer that a
common pattern is being used and nothing special is going on.

▶ If a function becomes harder to read by using a fold, then do not
force it into that pattern (except perhaps for training purposes).
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: ...
(f . g) x = f (g x)

For once – rather than starting from a type – let’s infer the type from
the code.
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: ... -> ... -> ... -> ...
(f . g) x = f (g x)

It’s apparently a curried function taking three arguments f , g and
x .
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: (... -> ...) -> (... -> ...) -> ... -> ...
(f . g) x = f (g x)

Both f and g are applied to something, so they must be functions.
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: (... -> ...) -> (... -> ...) -> a -> ...
(f . g) x = f (g x)

No requirements seem to be made about the type of x , except that
its passed to g , so let’s assume a type variable here . . .
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: (... -> ...) -> (a -> ...) -> a -> ...
(f . g) x = f (g x)

. . . which then should be the source type of g as well.
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: (b -> ...) -> (a -> b) -> a -> ...
(f . g) x = f (g x)

The target type of g should match the source type of f .
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: (b -> c) -> (a -> b) -> a -> c
(f . g) x = f (g x)

The target type of f is also the type of the overall result.
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Function composition

One of the most ubiquitous higher-order functions is function
composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

Putting extra parentheses in the type may make it more obvious that
we are indeed composing two matching functions.
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Composing functions

We can often build functions from existing functions simply by
composing them.

Example: Computing the first 100 odd square numbers.
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Composing functions

We can often build functions from existing functions simply by
composing them.

Example: Computing the first 100 odd square numbers.

example :: [Int]
example =

[1 . .]

We start by generating all numbers (lazy evaluation in action).

Well-Typed



Composing functions

We can often build functions from existing functions simply by
composing them.

Example: Computing the first 100 odd square numbers.

example :: [Int]
example =

map (\ x -> x * x) [1 . .]

We use map to compute the square numbers. Note that map and

filter are often used with anonymous functions.
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Composing functions

We can often build functions from existing functions simply by
composing them.

Example: Computing the first 100 odd square numbers.

example :: [Int]
example =
( filter odd . map (\ x -> x * x)) [1 . .]

We use function composition composition (and partial application) to
subsequently filter the odd square numbers.
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Composing functions

We can often build functions from existing functions simply by
composing them.

Example: Computing the first 100 odd square numbers.

example :: [Int]
example =
(take 100 . filter odd . map (\ x -> x * x)) [1 . .]

Finally, we use composition again to take the first 100 elements of this
list.
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Composition as a design pattern

▶ Function composition gives you a way to split one programming
problem into several, possibly smaller, programming problems.

▶ In general, higher-order functions are part of your toolbox for
attacking programming problems. Recognizing something as a
map or filter is also useful.

▶ Of course, you should never forget the standard design principle
of following the datatype structure as a good way of defining
most functions, if applying a higher-order function fails.
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Lessons

▶ Function composition is a bit like the functional semicolon. It
allows us to decompose larger tasks into smaller ones.

▶ Lazy evaluation allows us to separate the generation of possible
results from selecting interesting results. This allows more
modular programs in many situations.

▶ Partial application and anonymous functions help to keep such
composition chains concise.
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Operating on functions



Flipping a function

If you want to change the order of arguments of a two-argument
curried function, you can use

flip :: (a -> b -> c) -> (b -> a -> c)
flip f x y = f y x
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Flipping a function

If you want to change the order of arguments of a two-argument
curried function, you can use

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

Note once again that the function arrow associates to the right, so
flip can really be seen as a function with three arguments:

f :: a -> b -> c
x :: b
y :: a
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Flipping a function

If you want to change the order of arguments of a two-argument
curried function, you can use

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

Example use:

foreach = flip map

example = foreach [1, 2, 3] (\ x -> x * x)
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Currying and uncurrying

Sometimes, you end up with a pair and want to apply a function to it
that typically (in Haskell) is in curried form. Fortunately, we can convert
between curried and uncurried form easily:

uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f (x, y) = f x y

curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

Example:

map (uncurry (*)) (zip [1 . . 3] [4 . . 6])
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