
Part 1: Introduction
Introduction to Haskell

Andres Löh
Copyright © 2021 Well-Typed LLP

Well-Typed
The Haskell Consultants

In this part

Getting started with Haskell:

▶ What is Haskell?
▶ Haskell tooling overview
▶ Expressions
▶ Type inference
▶ Parametric polymorphism and overloading
▶ IO and explicit effects
▶ Datatypes and functions
▶ Pattern matching
▶ Lazy evaluation

Not yet a detailed introduction to these topics – everything will be
covered in more detail later.

Well-Typed

In this part

Getting started with Haskell:

▶ What is Haskell?
▶ Haskell tooling overview
▶ Expressions
▶ Type inference
▶ Parametric polymorphism and overloading
▶ IO and explicit effects
▶ Datatypes and functions
▶ Pattern matching
▶ Lazy evaluation

Not yet a detailed introduction to these topics – everything will be
covered in more detail later.

Well-Typed

What is Haskell?

▶ Designed by a committee to create a standard lazy and
functional language.

▶ Haskell 1.0 Report released 1990.
▶ Several iterations up to Haskell 98, released 1999.
▶ Minor revision of standard in Haskell 2010.
▶ A lot of development since then, but primarily outside of the

standard, in the Glasgow Haskell Compiler (GHC).

Well-Typed

Haskell tooling

GHCi

▶ Interactive component shipped with GHC.
▶ Use to quickly try out things, evaluate Haskell expressions, obtain

(type) information, and test your programs.

Editor (potentially with haskell-language-server)

▶ Use to define Haskellmodules containing declarations.
▶ Test these developments using GHCi again.

Note

You cannot just enter any Haskell program line-by-line into GHCi. Use
an editor for any more complex development.

Well-Typed

Haskell tooling

GHCi

▶ Interactive component shipped with GHC.
▶ Use to quickly try out things, evaluate Haskell expressions, obtain

(type) information, and test your programs.

Editor (potentially with haskell-language-server)

▶ Use to define Haskellmodules containing declarations.
▶ Test these developments using GHCi again.

Note

You cannot just enter any Haskell program line-by-line into GHCi. Use
an editor for any more complex development.

Well-Typed

Haskell tooling

GHCi

▶ Interactive component shipped with GHC.
▶ Use to quickly try out things, evaluate Haskell expressions, obtain

(type) information, and test your programs.

Editor (potentially with haskell-language-server)

▶ Use to define Haskellmodules containing declarations.
▶ Test these developments using GHCi again.

Note

You cannot just enter any Haskell program line-by-line into GHCi. Use
an editor for any more complex development.

Well-Typed

Expressions

Expressions in context

▶ Haskell programs are structured intomodules (think: files).
▶ Modules contain declarations.
▶ The most important form of declarations are bindings for new

constants and functions.
▶ In such bindings, expressions play the central role.

Therefore we are going to look at expressions before everything else.

Well-Typed

Expressions

A Haskell expression is a (possibly nested) terms built up from
constants and function calls.

▶ An important property of expressions is that they can be
evaluated, yielding a value.

▶ Values are themselves expressions that cannot be evaluated any
further.

▶ You can type expressions into GHCi. GHCi will then try to evaluate
the expression and print its resulting value.

Well-Typed

Expressions

A Haskell expression is a (possibly nested) terms built up from
constants and function calls.

▶ An important property of expressions is that they can be
evaluated, yielding a value.

▶ Values are themselves expressions that cannot be evaluated any
further.

▶ You can type expressions into GHCi. GHCi will then try to evaluate
the expression and print its resulting value.

Well-Typed

Examples of values

GHCi> 2
2

GHCi> 'x'
'x'

GHCi> "Haskell"
"Haskell"

GHCi> True
True

GHCi> [1,2,4]
[1,2,4]

Well-Typed

Examples of function calls

GHCi> not True
False

GHCi> min 7 2
2

GHCi> 2 + 3
5

GHCi> 3 : [10,99]
[3,10,99]

GHCi> take 2 [1,3,9,27,81]
[1,3]

GHCi> map odd [1,2,3,4,5]
[True,False,True,False,True]

Well-Typed

Operators are functions

Only syntactic differences between symbolic and alphanumeric
function names.

GHCi> 6 + 9
15

GHCi> (+) 6 9
15

Symbolic identifiers (operators) are infix by default, and can be made
prefix by enclosing them in parentheses.

GHCi> max 12 20
20

GHCi> 12 `max` 20
20

Alphanumeric identifiers are prefix by default, and can be made
infix by enclosing them in backquotes.

Well-Typed

Operators are functions

Only syntactic differences between symbolic and alphanumeric
function names.

GHCi> 6 + 9
15

GHCi> (+) 6 9
15

Symbolic identifiers (operators) are infix by default, and can be made
prefix by enclosing them in parentheses.

GHCi> max 12 20
20

GHCi> 12 `max` 20
20

Alphanumeric identifiers are prefix by default, and can be made
infix by enclosing them in backquotes.

Well-Typed

Operators are functions

Only syntactic differences between symbolic and alphanumeric
function names.

GHCi> 6 + 9
15

GHCi> (+) 6 9
15

Symbolic identifiers (operators) are infix by default, and can be made
prefix by enclosing them in parentheses.

GHCi> max 12 20
20

GHCi> 12 `max` 20
20

Alphanumeric identifiers are prefix by default, and can be made
infix by enclosing them in backquotes.

Well-Typed

Function application syntax

“Space” is function application:

min 7 2 -- function applied to two arguments

Parentheses are used for grouping:

GHCi> min 7 (2 + 6)
7
GHCi> min 7 2 + 6
8

Function application binds stronger than operators.

Well-Typed

Function application syntax

“Space” is function application:

min 7 2 -- function applied to two arguments

Parentheses are used for grouping:

GHCi> min 7 (2 + 6)
7
GHCi> min 7 2 + 6
8

Function application binds stronger than operators.

Well-Typed

More examples of expressions

GHCi> reverse (reverse [1,2,3])
[1,2,3]

GHCi> sum (filter odd [1,2,3,4,5])
9

GHCi> take 1 "Haskell" ++ drop 4 "Haskell"
"Hell"

Well-Typed

Anonymous functions (or lambda terms)

Referring to functions without giving them a name:

GHCi> (\ x -> x + 3) 4
7

GHCi> (\ list n -> take n (reverse list)) "hello" 3
"oll"

The \ is pronounced “lambda”.

Particularly useful as an argument to another function:

GHCi> map (\ x -> 3 * x + 1) [1,2,3]
[4,7,10]

Functions taking other functions as arguments are called higher-order
functions.

Well-Typed

Anonymous functions (or lambda terms)

Referring to functions without giving them a name:

GHCi> (\ x -> x + 3) 4
7

GHCi> (\ list n -> take n (reverse list)) "hello" 3
"oll"

The \ is pronounced “lambda”.

Particularly useful as an argument to another function:

GHCi> map (\ x -> 3 * x + 1) [1,2,3]
[4,7,10]

Functions taking other functions as arguments are called higher-order
functions.

Well-Typed

First recap

We have learned about:

▶ Expressions and values,
▶ Functions and operators,
▶ Numbers, characters, Booleans, lists (and strings),
▶ Lambda terms.

In particular, try to get used to the function application syntax (using
space) and the use of parentheses only for grouping.

Well-Typed

Types

Expressions have types

▶ Every expression (and subexpression) has a type.
▶ Types are checked statically.
▶ Types can be inferred.

You can use GHCi (or your editor with haskell-language-server) to infer
types.

Well-Typed

Expressions have types

▶ Every expression (and subexpression) has a type.
▶ Types are checked statically.
▶ Types can be inferred.

You can use GHCi (or your editor with haskell-language-server) to infer
types.

Well-Typed

Inferring types in GHCi

GHCi> :t 'x'
'x' :: Char

GHCi> :t False
False :: Bool

GHCi> :t [True,False]
[True,False] :: [Bool]

GHCi> :t not
not :: Bool -> Bool

▶ :t is a GHCi command – it’s not a part of Haskell.
▶ The :: symbol reads “is of type”.
▶ Types are different from expressions. You cannot use a type as an

expression.

Well-Typed

Inferring types in GHCi

GHCi> :t 'x'
'x' :: Char

GHCi> :t False
False :: Bool

GHCi> :t [True,False]
[True,False] :: [Bool]

GHCi> :t not
not :: Bool -> Bool

▶ :t is a GHCi command – it’s not a part of Haskell.
▶ The :: symbol reads “is of type”.
▶ Types are different from expressions. You cannot use a type as an

expression.

Well-Typed

Parametric polymorphism

GHCi> :t reverse
reverse :: [a] -> [a]

GHCi> reverse [True,False]
[False,True]

GHCi> reverse [1,2,3]
[3,2,1]

GHCi> reverse "Haskell"
"lleksaH"

▶ Lower-case identifiers in types are type variables.
▶ Types involving variables are called parametrically polymorphic.
▶ We can choose at which concrete type to use the expression.
▶ Strings are lists of characters.

Well-Typed

Parametric polymorphism

GHCi> :t reverse
reverse :: [a] -> [a]

GHCi> reverse [True,False]
[False,True]

GHCi> reverse [1,2,3]
[3,2,1]

GHCi> reverse "Haskell"
"lleksaH"

▶ Lower-case identifiers in types are type variables.
▶ Types involving variables are called parametrically polymorphic.
▶ We can choose at which concrete type to use the expression.
▶ Strings are lists of characters.

Well-Typed

Currying

GHCi> :t take
take :: Int -> [a] -> [a]

Two views:

▶ A function that takes an Int and a [a]

and returns a [a] .

▶ A function that takes an Int
and returns another function, which then expects a [a]

and returns a [a] .

The function arrow associates to the right. These two types are the
same:

take :: Int -> [a] -> [a]
take :: Int -> ([a] -> [a])

Well-Typed

Currying

GHCi> :t take
take :: Int -> [a] -> [a]

Two views:

▶ A function that takes an Int and a [a]

and returns a [a] .

▶ A function that takes an Int
and returns another function, which then expects a [a]

and returns a [a] .

The function arrow associates to the right. These two types are the
same:

take :: Int -> [a] -> [a]
take :: Int -> ([a] -> [a])

Well-Typed

Currying

GHCi> :t take
take :: Int -> [a] -> [a]

Two views:

▶ A function that takes an Int and a [a]

and returns a [a] .

▶ A function that takes an Int
and returns another function, which then expects a [a]

and returns a [a] .

The function arrow associates to the right. These two types are the
same:

take :: Int -> [a] -> [a]
take :: Int -> ([a] -> [a])

Well-Typed

Currying

GHCi> :t take
take :: Int -> [a] -> [a]

Two views:

▶ A function that takes an Int and a [a]

and returns a [a] .

▶ A function that takes an Int
and returns another function, which then expects a [a]

and returns a [a] .

The function arrow associates to the right. These two types are the
same:

take :: Int -> [a] -> [a]
take :: Int -> ([a] -> [a])

Well-Typed

Partial application

GHCi> :t take
take :: Int -> [a] -> [a]
GHCi> :t take 2
take 2 :: [a] -> [a]
GHCi> :t take 2 "currying"
take 2 "currying" :: [Char]

GHCi> take 2 "currying"
"cu"

Well-Typed

Partial application in use

GHCi> :t map
map :: (a -> b) -> [a] -> [b]
GHCi> :t take 2
take 2 :: [a] -> [a]
GHCi> :t map (take 2)
map (take 2) :: [[a]] -> [[a]]

GHCi> map (take 2) [[1,2,3],[4,5,6],[7,8,9]]
[[1,2],[4,5],[7,8]]

Partial application can be seen as an abbreviation for a lambda term:

GHCi> map (\ x -> take 2 x) [[1,2,3],[4,5,6],[7,8,9]]
[[1,2],[4,5],[7,8]]

Well-Typed

Partial application in use

GHCi> :t map
map :: (a -> b) -> [a] -> [b]
GHCi> :t take 2
take 2 :: [a] -> [a]
GHCi> :t map (take 2)
map (take 2) :: [[a]] -> [[a]]

GHCi> map (take 2) [[1,2,3],[4,5,6],[7,8,9]]
[[1,2],[4,5],[7,8]]

Partial application can be seen as an abbreviation for a lambda term:

GHCi> map (\ x -> take 2 x) [[1,2,3],[4,5,6],[7,8,9]]
[[1,2],[4,5],[7,8]]

Well-Typed

Partial application in use

GHCi> :t map
map :: (a -> b) -> [a] -> [b]
GHCi> :t take 2
take 2 :: [a] -> [a]
GHCi> :t map (take 2)
map (take 2) :: [[a]] -> [[a]]

GHCi> map (take 2) [[1,2,3],[4,5,6],[7,8,9]]
[[1,2],[4,5],[7,8]]

Partial application can be seen as an abbreviation for a lambda term:

GHCi> map (\ x -> take 2 x) [[1,2,3],[4,5,6],[7,8,9]]
[[1,2],[4,5],[7,8]]

Well-Typed

Overloading

Some functions work for many, but not all types:

GHCi> :t enumFromTo
enumFromTo :: Enum a => a -> a -> [a]

The part of to the left of the => is a constraint which restricts the
choice of the type variable a to types that are an instance of the
type class Enum .

Many types are an instance of Enum , but not all types are.

Well-Typed

Overloading

Some functions work for many, but not all types:

GHCi> :t enumFromTo
enumFromTo :: Enum a => a -> a -> [a]

The part of to the left of the => is a constraint which restricts the
choice of the type variable a to types that are an instance of the
type class Enum .

Many types are an instance of Enum , but not all types are.

Well-Typed

Overloading in use

GHCi> enumFromTo 1 5
[1,2,3,4,5]

GHCi> enumFromTo 'a' 'c'
"abc"

GHCi> enumFromTo False True
[False,True]

GHCi> enumFromTo "abc" "def"
No instance for (Enum [Char]) arising from a use of ‘enumFromTo ’

Lists are not an instance of the Enum class.

Well-Typed

Overloading in use

GHCi> enumFromTo 1 5
[1,2,3,4,5]

GHCi> enumFromTo 'a' 'c'
"abc"

GHCi> enumFromTo False True
[False,True]

GHCi> enumFromTo "abc" "def"
No instance for (Enum [Char]) arising from a use of ‘enumFromTo ’

Lists are not an instance of the Enum class.

Well-Typed

Overloading is used in lots of places

GHCi> :t max
max :: Ord a => a -> a -> a

GHCi> :t (+)
(+) :: Num a => a -> a -> a

GHCi> :t length
length :: Foldable f => f a -> Int

The “container” is restricted, but not the element type:

GHCi> length [(+),(-),\ x y -> x * x + y]
3

For now, if you see Foldable , think “list”.

Well-Typed

Overloading is used in lots of places

GHCi> :t max
max :: Ord a => a -> a -> a

GHCi> :t (+)
(+) :: Num a => a -> a -> a

GHCi> :t length
length :: Foldable f => f a -> Int

The “container” is restricted, but not the element type:

GHCi> length [(+),(-),\ x y -> x * x + y]
3

For now, if you see Foldable , think “list”.

Well-Typed

Type errors

GHCi> not 'x'
Couldn’t match expected type ‘Bool ’ with actual type ‘Char ’

Numeric literals are overloaded, and cause somewhat confusing errors:

GHCi> :t 1
1 :: Num p => p

GHCi> not 1
No instance for (Num Bool) arising from the literal ‘1 ’

Well-Typed

Type errors

GHCi> not 'x'
Couldn’t match expected type ‘Bool ’ with actual type ‘Char ’

Numeric literals are overloaded, and cause somewhat confusing errors:

GHCi> :t 1
1 :: Num p => p

GHCi> not 1
No instance for (Num Bool) arising from the literal ‘1 ’

Well-Typed

GHCi pitfall

This looks like a type error, but the error is not in your code:

GHCi> take
No instance for (Show (Int -> [a0] -> [a0]))
arising from a use of ‘print ’

The expression is in fact type-correct:

GHCi> :t take
take :: Int -> [a] -> [a]

GHCi implicitly tries to call print on the expressions you type, to
print the result of evaluation on screen, and this fails . . .

Well-Typed

GHCi pitfall

This looks like a type error, but the error is not in your code:

GHCi> take
No instance for (Show (Int -> [a0] -> [a0]))
arising from a use of ‘print ’

The expression is in fact type-correct:

GHCi> :t take
take :: Int -> [a] -> [a]

GHCi implicitly tries to call print on the expressions you type, to
print the result of evaluation on screen, and this fails . . .

Well-Typed

Explicit effects

GHCi> :t print
print :: Show a => a -> IO ()

▶ The type () is a type containing just one value () .

▶ The type IO () denotes an IO action yielding no interesting
result, but having the side effect of printing the argument to the
screen.

▶ The argument is flexible, but constrained to be an instance of the
Show class.

▶ Functions are not an instance of the Show class, hence the GHCi
error when typing in anything of a functional type.

▶ In Haskell, all side-effecting operations are explicitly marked by
being elements of the IO type.

Well-Typed

Second recap

We have learned about:

▶ Inferring types with GHCi,
▶ Currying and partial application,
▶ Parametric polymorphism (types containing unconstrained

variables),
▶ Overloading (types containing constrained variables),
▶ Explicit effects (the IO type).

The primary goals for now are to be aware of :t in GHCi and to be
able to make some sense of the reported types.

Well-Typed

Datatypes and functions

Bindings

A binding is a declaration that gives a name to an expression so that
it can be reused.

five = 2 + 3

ten = five + five

aList = [1,2,3,4,five]

Such bindings are typically put into a Haskell file in an editor, with the
extension .hs.

(One can make bindings directly in GHCi, but certain restrictions are
then in place.)

Well-Typed

Using new bindings in GHCi

One can then load the source file into GHCi and use the bindings:

GHCi> five
5
GHCi> ten
10
GHCi> map (\ x -> x * ten) aList
[10,20,30,40,50]

Well-Typed

Function bindings

double = \ x -> x + x

A different way to define the same function:

double x = x + x

GHCi> double 3
6
GHCi> double (-10)
-20

Careful with negative numbers!

GHCi> double - 10
Non type-variable argument in the constraint: Num (a -> a)

(A slightly strange way to complain that there is no Num instance for
function types.)

Well-Typed

Function bindings

double = \ x -> x + x

A different way to define the same function:

double x = x + x

GHCi> double 3
6
GHCi> double (-10)
-20

Careful with negative numbers!

GHCi> double - 10
Non type-variable argument in the constraint: Num (a -> a)

(A slightly strange way to complain that there is no Num instance for
function types.)

Well-Typed

Function bindings

double = \ x -> x + x

A different way to define the same function:

double x = x + x

GHCi> double 3
6
GHCi> double (-10)
-20

Careful with negative numbers!

GHCi> double - 10
Non type-variable argument in the constraint: Num (a -> a)

(A slightly strange way to complain that there is no Num instance for
function types.)

Well-Typed

Type signatures

Type signatures are optional, but strongly encouraged:

distance :: Num a => a -> a -> a
distance x1 x2 = abs (x1 - x2)

▶ Type signatures are checked and enforced.
▶ Types provide guidance for defining functions.
▶ Typically type errors are better with explicit type signatures.

Well-Typed

The Prelude

Very little is built into Haskell. E.g., all of

(+)
min
not

are library functions.

▶ Code is organized intomodules.
▶ One special module Prelude is implicitly available in any other

Haskell module.

Well-Typed

The Prelude

Very little is built into Haskell. E.g., all of

(+)
min
not

are library functions.

▶ Code is organized intomodules.
▶ One special module Prelude is implicitly available in any other

Haskell module.

Well-Typed

Defining a datatype

data Choice = Rock | Paper | Scissors
deriving Show

Defines a new datatype Choice with just three values: Rock ,
Paper , and Scissors .

GHCi> :t Rock
Choice
GHCi> :t Paper
Choice
GHCi> Rock
Rock

The last command works only because deriving Show instructs

GHC to create an “obvious” Show instance for the new datatype.

Well-Typed

Defining a datatype

data Choice = Rock | Paper | Scissors
deriving Show

Defines a new datatype Choice with just three values: Rock ,
Paper , and Scissors .

GHCi> :t Rock
Choice
GHCi> :t Paper
Choice
GHCi> Rock
Rock

The last command works only because deriving Show instructs

GHC to create an “obvious” Show instance for the new datatype.

Well-Typed

Pattern matching

improve :: Choice -> Choice
improve Rock = Paper
improve Paper = Scissors
improve Scissors = Rock

The terms Rock , Paper and Scissors are called the (data)

constructors of the Choice type.

Data constructors can be used for pattern matching.

If a binding has multiple equations, then the patterns on the left hand
sides determine which equation applies for a given argument.

GHCi> improve Paper
Scissors

Well-Typed

Pattern matching

improve :: Choice -> Choice
improve Rock = Paper
improve Paper = Scissors
improve Scissors = Rock

The terms Rock , Paper and Scissors are called the (data)

constructors of the Choice type.

Data constructors can be used for pattern matching.

If a binding has multiple equations, then the patterns on the left hand
sides determine which equation applies for a given argument.

GHCi> improve Paper
Scissors

Well-Typed

Logical or

The actual definitions of Bool and (|) :

data Bool = False | True
deriving Show -- and other classes

(||) :: Bool -> Bool -> Bool
False || y = y
True || y = True

GHCi> True || False
True

GHCi> False || False
False

Well-Typed

Logical or

The actual definitions of Bool and (|) :

data Bool = False | True
deriving Show -- and other classes

(||) :: Bool -> Bool -> Bool
False || y = y
True || y = True

GHCi> True || False
True

GHCi> False || False
False

Well-Typed

Our own list type

data List a = Nil | Cons a (List a)
deriving Show

GHCi> :t Nil
List a
GHCi> :t Cons
a -> List a -> List a
GHCi> :t Cons 1 (Cons 2 (Cons 3 Nil))
Cons 1 (Cons 2 (Cons 3 Nil)) :: Num a => List a
GHCi> Cons 1 (Cons 2 (Cons 3 Nil))
Cons 1 (Cons 2 (Cons 3 Nil))

Well-Typed

Our own list type

data List a = Nil | Cons a (List a)
deriving Show

GHCi> :t Nil
List a
GHCi> :t Cons
a -> List a -> List a
GHCi> :t Cons 1 (Cons 2 (Cons 3 Nil))
Cons 1 (Cons 2 (Cons 3 Nil)) :: Num a => List a
GHCi> Cons 1 (Cons 2 (Cons 3 Nil))
Cons 1 (Cons 2 (Cons 3 Nil))

Well-Typed

Built-in lists

Special syntax:

data [a] = [] | a : [a]
deriving Show -- and other classes

infixr 5 : -- the “cons” operator is right-associative

GHCi> :t []
[a]
GHCi> :t (:)
a -> [a] -> [a]
GHCi> :t 1 : 2 : 3 : []
1 : 2 : 3 : [] :: Num a => [a]
GHCi> 1 : 2 : 3 : []
[1,2,3]

The notation [1,2,3] is actually syntactic sugar for

1 : 2 : 3 : [] .

Well-Typed

Built-in lists

Special syntax:

data [a] = [] | a : [a]
deriving Show -- and other classes

infixr 5 : -- the “cons” operator is right-associative

GHCi> :t []
[a]
GHCi> :t (:)
a -> [a] -> [a]
GHCi> :t 1 : 2 : 3 : []
1 : 2 : 3 : [] :: Num a => [a]
GHCi> 1 : 2 : 3 : []
[1,2,3]

The notation [1,2,3] is actually syntactic sugar for

1 : 2 : 3 : [] .

Well-Typed

Pattern matching on lists

elem x [] = ...

What if we are looking for an element in the empty list?

Well-Typed

Pattern matching on lists

elem x [] = False

If a list is not [] , it must be of shape y : ys for a suitable “head”
y and “tail” ys . . .

Well-Typed

Pattern matching on lists

elem x [] = False
elem x (y : ys) = ...

One option is that x is equal to y . . .

Well-Typed

Pattern matching on lists

elem x [] = False
elem x (y : ys) = x == y

Here, (==) tests two expressions for equality.

This definition works, but it is not correct. We also need to consider
ys . . .

Well-Typed

Pattern matching on lists

elem x [] = False
elem x (y : ys) = x == y || elem x ys

Recursion is the answer!

The list datatype definition is recursive. Functions on lists are typically
recursive as well.

What about a type signature?

Well-Typed

Pattern matching on lists

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y : ys) = x == y || elem x ys

We make no assumptions about the type of list elements except that
we can perform the equality test, which comes from the Eq class.

Well-Typed

Haskell’s evaluation model

▶ Expressions are “reduced” to values.
▶ For function calls, find matching equations.
▶ Replace left hand sides by right hand sides.
▶ Stop once no more reduction is possible (a value is reached).
▶ This process is called equational reasoning.

Well-Typed

Equational reasoning example

elem 9 [6,9,42]

⇝ elem 9 (6 : (9 : (42 : [])))
⇝ 9 == 6 || elem 9 (9 : 42 : [])
⇝ False || elem 9 (9 : 42 : [])
⇝ elem 9 (9 : 42 : [])
⇝ 9 == 9 || elem 9 (42 : [])
⇝ True || elem 9 (42 : [])
⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Equational reasoning example

elem 9 [6,9,42]
⇝ elem 9 (6 : (9 : (42 : [])))

⇝ 9 == 6 || elem 9 (9 : 42 : [])
⇝ False || elem 9 (9 : 42 : [])
⇝ elem 9 (9 : 42 : [])
⇝ 9 == 9 || elem 9 (42 : [])
⇝ True || elem 9 (42 : [])
⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Equational reasoning example

elem 9 [6,9,42]
⇝ elem 9 (6 : (9 : (42 : [])))
⇝ 9 == 6 || elem 9 (9 : 42 : [])

⇝ False || elem 9 (9 : 42 : [])
⇝ elem 9 (9 : 42 : [])
⇝ 9 == 9 || elem 9 (42 : [])
⇝ True || elem 9 (42 : [])
⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Equational reasoning example

elem 9 [6,9,42]
⇝ elem 9 (6 : (9 : (42 : [])))
⇝ 9 == 6 || elem 9 (9 : 42 : [])
⇝ False || elem 9 (9 : 42 : [])

⇝ elem 9 (9 : 42 : [])
⇝ 9 == 9 || elem 9 (42 : [])
⇝ True || elem 9 (42 : [])
⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Equational reasoning example

elem 9 [6,9,42]
⇝ elem 9 (6 : (9 : (42 : [])))
⇝ 9 == 6 || elem 9 (9 : 42 : [])
⇝ False || elem 9 (9 : 42 : [])
⇝ elem 9 (9 : 42 : [])

⇝ 9 == 9 || elem 9 (42 : [])
⇝ True || elem 9 (42 : [])
⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Equational reasoning example

elem 9 [6,9,42]
⇝ elem 9 (6 : (9 : (42 : [])))
⇝ 9 == 6 || elem 9 (9 : 42 : [])
⇝ False || elem 9 (9 : 42 : [])
⇝ elem 9 (9 : 42 : [])
⇝ 9 == 9 || elem 9 (42 : [])

⇝ True || elem 9 (42 : [])
⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Equational reasoning example

elem 9 [6,9,42]
⇝ elem 9 (6 : (9 : (42 : [])))
⇝ 9 == 6 || elem 9 (9 : 42 : [])
⇝ False || elem 9 (9 : 42 : [])
⇝ elem 9 (9 : 42 : [])
⇝ 9 == 9 || elem 9 (42 : [])
⇝ True || elem 9 (42 : [])

⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Equational reasoning example

elem 9 [6,9,42]
⇝ elem 9 (6 : (9 : (42 : [])))
⇝ 9 == 6 || elem 9 (9 : 42 : [])
⇝ False || elem 9 (9 : 42 : [])
⇝ elem 9 (9 : 42 : [])
⇝ 9 == 9 || elem 9 (42 : [])
⇝ True || elem 9 (42 : [])
⇝ True

Remember:
elem x [] = False
elem x (y : ys) = x == y || elem x ys

False || y = y
True || y = True

Well-Typed

Lazy evaluation

Let’s look at the definition of “or” again:

False || y = y
True || y = True

▶ We can make a decision without looking at the second argument
(and indeed we did, while reducing elem).

▶ This definition of (||) has “shortcut behaviour”.
▶ Unlike in many languages, this does not require a special hack, but

follows from the definition and Haskell’s evaluation strategy that
essentially says “only evaluate things once they are needed”.

Well-Typed

Recap

The most fundamental concept to define functions on datatypes is
pattern matching:

▶ We distinguish multiple cases, usually one per data constructor of
the datatype of the function argument we analyze.

▶ We often use recursion when the underlying datatype is recursive
(such as lists are).

It is very easy to define new datatypes. New datatypes start out with
no operations (except pattern matching), but for some classes, we can
use deriving to obtain instances automatically.

Well-Typed

Outlook

In the next part of the course, we take a much more detailed look at
how to define functions systematically using pattern matching, and
discuss various datatypes.

We also discuss the expression language in more detail.

In the other parts we will discuss:

▶ parametric polymorphism and overloading,
▶ higher-order functions and abstraction,
▶ explicit effects (the IO) type,
▶ more advanced abstraction patterns such as applicative functors

and monads.

Well-Typed

