
Part 5: IO and explicit effects
Introduction to Haskell

Andres Löh
Copyright © 2021 Well-Typed LLP

Well-Typed
The Haskell Consultants

Goals

▶ Recap: explicit effects.
▶ Simple IO programs.
▶ Building larger IO programs.
▶ Reconciling IO and the functional style.

Well-Typed

Explicit effects

The original motivation for explicit effects

▶ Given lazy evaluation as a strategy, the moment of evaluation is
not easy to predict and hence not a good trigger for side-effecting
actions.

▶ Even worse, it may be difficult to predict whether a term is
evaluated at all.

▶ We would like to keep equational reasoning, and allow compiler
optimisations such as
▶ strictness analysis – evaluating things earlier than needed if they

will definitely be needed, or
▶ speculative evaluation – evaluating things even if they might not

be needed at all.

Well-Typed

The classic approach

In most languages, execution of side effects is tied to evaluation of
the side-effecting expression.

This is feasible for languages with eager evaluation, because the order
in which expressions are written down corresponds closely to the
resulting order of evaluation.

With lazy evaluation, this is not the case . . .

Well-Typed

Problematic programs

Assume for the time being:

getLine :: String

Consider:

program1 =
let
x = getLine
y = getLine

in
x ++ y

program2 =
let
x = getLine

in
x ++ x

program3 =
let
x = getLine
y = getLine

in
y ++ x

If evaluation triggers the effect and evaluation is lazy, then when and
how far we look at the resulting string will determine if and when lines
are being read.

Using equational reasoning, all three programs should mean the same.

Well-Typed

Problematic programs

Assume for the time being:

getLine :: String

Consider:

program1 =
let
x = getLine
y = getLine

in
x ++ y

program2 =
let
x = getLine

in
x ++ x

program3 =
let
x = getLine
y = getLine

in
y ++ x

If evaluation triggers the effect and evaluation is lazy, then when and
how far we look at the resulting string will determine if and when lines
are being read.

Using equational reasoning, all three programs should mean the same.

Well-Typed

Problematic programs

Assume for the time being:

getLine :: String

Consider:

program1 =
let
x = getLine
y = getLine

in
x ++ y

program2 =
let
x = getLine

in
x ++ x

program3 =
let
x = getLine
y = getLine

in
y ++ x

If evaluation triggers the effect and evaluation is lazy, then when and
how far we look at the resulting string will determine if and when lines
are being read.

Using equational reasoning, all three programs should mean the same.

Well-Typed

Problematic programs

Assume for the time being:

getLine :: String

Consider:

program1 =
let
x = getLine
y = getLine

in
x ++ y

program2 =
let
x = getLine

in
x ++ x

program3 =
let
x = getLine
y = getLine

in
y ++ x

If evaluation triggers the effect and evaluation is lazy, then when and
how far we look at the resulting string will determine if and when lines
are being read.

Using equational reasoning, all three programs should mean the same.
Well-Typed

The Haskell approach

We do not tie the execution of side effects to evaluation.

We introduce a new datatype IO and make evaluation and
execution separate concepts!

Well-Typed

The Haskell approach

We do not tie the execution of side effects to evaluation.

We introduce a new datatype IO and make evaluation and
execution separate concepts!

Well-Typed

Evaluation vs. execution

data IO a -- abstract

The type of plans to perform effects that ultimately yield an a .

▶ Evaluation does not trigger the actual effects. It will at most
evaluate the plan.

▶ Execution triggers the actual effects. Executing a plan is not
possible from within a Haskell program.

Well-Typed

Evaluation vs. execution

data IO a -- abstract

The type of plans to perform effects that ultimately yield an a .

▶ Evaluation does not trigger the actual effects. It will at most
evaluate the plan.

▶ Execution triggers the actual effects. Executing a plan is not
possible from within a Haskell program.

Well-Typed

The main program

main :: IO ()

▶ The entry point into the program is a plan to perform effects (a
possibly rather complex one).

▶ This is the one and only plan that actually gets executed.

Well-Typed

The unit type

data () = () -- special syntax

Constructor:

() :: ()

▶ A type with a single value (nullary tuple).
▶ Often used to parameterize other types.
▶ A plan for actions with no interesting result: IO () .

Well-Typed

Execution of effects via GHCi

For convenience, GHCi also executes IO actions:

GHCi> getLine
Some text.
"Some text."

getLine :: IO String

A plan that when executed, reads a line interactively and returns that
line as a String .

Well-Typed

Execution of effects with unit results in GHCi

GHCi does not print the final result of IO () -typed actions:

GHCi> writeFile "test.txt" "Hello"
GHCi> putStrLn "two\nlines"
two
lines

writeFile :: FilePath -> String -> IO ()
putStrLn :: String -> IO ()

Well-Typed

Explicit effects are a good idea

(Not just in Haskell, not just in a lazily evaluated language.)

▶ We can see via the type of a program whether it is guaranteed to
have no side effects, or whether it is allowed to use effects.

▶ In principle, we can even make more fine-grained statements
than just yes or no, by allowing just specific classes of effects.

▶ Encourages a programming style that keeps as much as possible
effect-free.

▶ Makes it easier to test programs, or to run them in a different
context.

Well-Typed

Constructing larger plans

Basic sequencing

(>>) :: IO a -> IO b -> IO b

Function that takes two plans and constructs a plan that first executes
the first plan, discard its result, then executes the second plan, and
returns its result.

Well-Typed

Reading two lines

getTwoLines :: IO String
getTwoLines = getLine >> getLine

GHCi> getTwoLines
Line 1.
Line 2.
"Line 2."

Well-Typed

Reading two lines

getTwoLines :: IO String
getTwoLines = getLine >> getLine

GHCi> getTwoLines
Line 1.
Line 2.
"Line 2."

Well-Typed

Modifying the result of a plan

liftM :: (a -> b) -> IO a -> IO b

Takes a function and a plan. Constructs a plan that executes the given
plan, but before returning the result, applies the function.

duplicateLine :: IO String
duplicateLine = liftM (\ x -> x ++ x) getLine

GHCi> duplicateLine
Hello
"HelloHello"

Well-Typed

Modifying the result of a plan

liftM :: (a -> b) -> IO a -> IO b

Takes a function and a plan. Constructs a plan that executes the given
plan, but before returning the result, applies the function.

duplicateLine :: IO String
duplicateLine = liftM (\ x -> x ++ x) getLine

GHCi> duplicateLine
Hello
"HelloHello"

Well-Typed

Shouting

GHCi> :t toUpper
toUpper :: Char -> Char
GHCi> toUpper 'x'
'X'
GHCi> liftM (map toUpper) getLine
Hello
"HELLO"

Well-Typed

Combining the output of two sequenced plans

liftM2 :: (a -> b -> c) -> IO a -> IO b -> IO c

Takes an operator and two plans. Constructs a plan that executes the
two plans in sequence, and uses the operator to combine the two
results.

joinTwoLines :: IO String
joinTwoLines = liftM2 (++) getLine getLine

GHCi> joinTwoLines
Hello
world
"Helloworld"

Well-Typed

Combining the output of two sequenced plans

liftM2 :: (a -> b -> c) -> IO a -> IO b -> IO c

Takes an operator and two plans. Constructs a plan that executes the
two plans in sequence, and uses the operator to combine the two
results.

joinTwoLines :: IO String
joinTwoLines = liftM2 (++) getLine getLine

GHCi> joinTwoLines
Hello
world
"Helloworld"

Well-Typed

Joining and flipping two lines

flipTwoLines :: IO String
flipTwoLines =
liftM2 (\ x y -> y ++ x) getLine getLine

GHCi> flipTwoLines
Hello
world
"worldHello"

Well-Typed

Joining and flipping two lines

flipTwoLines :: IO String
flipTwoLines =
liftM2 (\ x y -> y ++ x) getLine getLine

GHCi> flipTwoLines
Hello
world
"worldHello"

Well-Typed

Revisiting the problematic examples

Wrong:

program1 = getLine ++ getLine
program2 = (\ x -> x ++ x) getLine
program3 = (\ x y -> y ++ x) getLine getLine

Better:

joinTwoLines1 = liftM2 (++) getLine getLine
joinTwoLines2 = (\ x -> liftM2 (++) x x) getLine
joinTwoLines3 =
(\ x y -> liftM2 (++) y x) getLine getLine

duplicateLine = liftM (\ x -> x ++ x) getLine

flipTwoLines =
liftM2 (\ x y -> y ++ x) getLine getLine

Well-Typed

Revisiting the problematic examples

Wrong:

program1 = getLine ++ getLine
program2 = (\ x -> x ++ x) getLine
program3 = (\ x y -> y ++ x) getLine getLine

Better:

joinTwoLines1 = liftM2 (++) getLine getLine
joinTwoLines2 = (\ x -> liftM2 (++) x x) getLine
joinTwoLines3 =
(\ x y -> liftM2 (++) y x) getLine getLine

duplicateLine = liftM (\ x -> x ++ x) getLine

flipTwoLines =
liftM2 (\ x y -> y ++ x) getLine getLine

Well-Typed

Actions that depend on the results of earlier actions

Bind: letting an action use an earlier result

(>>=) :: IO a -> (a -> IO b) -> IO b

Well-Typed

Shouting back

Transforms the result (but does not print it back):

shout :: IO String
shout = liftM (map toUpper) getLine

shoutBack :: IO ()
shoutBack = shout >>= putStrLn

(>>=) :: IO a -> (a -> IO b) -> IO b
shout :: IO String
putStrLn :: String -> IO ()
shout >>= putStrLn :: IO ()

Well-Typed

Shouting back

Transforms the result (but does not print it back):

shout :: IO String
shout = liftM (map toUpper) getLine

shoutBack :: IO ()
shoutBack = shout >>= putStrLn

(>>=) :: IO a -> (a -> IO b) -> IO b
shout :: IO String
putStrLn :: String -> IO ()
shout >>= putStrLn :: IO ()

Well-Typed

Shouting back

Transforms the result (but does not print it back):

shout :: IO String
shout = liftM (map toUpper) getLine

shoutBack :: IO ()
shoutBack = shout >>= putStrLn

(>>=) :: IO a -> (a -> IO b) -> IO b
shout :: IO String
putStrLn :: String -> IO ()
shout >>= putStrLn :: IO ()

Well-Typed

Shouting back twice

shoutBackTwice :: IO ()
shoutBackTwice =
shout >>= \ x -> putStrLn x >> putStrLn x

Well-Typed

In GHCi

GHCi> shoutBack
Hello
Hello

GHCi> shoutBackTwice
can you hear me?
CAN YOU HEAR ME?
CAN YOU HEAR ME?

Well-Typed

Optioning out of doing IO

return :: a -> IO a

An plan that when executed, perform no effects and returns the given
result.

▶ Intuitively, IO a says that wemay use effects to obtain an a .
We are not required to.

▶ On the other hand, a says that wemust not use effects to
obtain an a .

Well-Typed

Optioning out of doing IO

return :: a -> IO a

An plan that when executed, perform no effects and returns the given
result.

▶ Intuitively, IO a says that wemay use effects to obtain an a .
We are not required to.

▶ On the other hand, a says that wemust not use effects to
obtain an a .

Well-Typed

No escape from IO!

There is no1 function

runIO :: IO a -> a

If a value requires effects to obtain, we should not ever pretend that it
does not.

1There actually is one, called unsafePerformIO , but its use is generally not
justified.

Well-Typed

No escape from IO!

There is no1 function

runIO :: IO a -> a

If a value requires effects to obtain, we should not ever pretend that it
does not.

1There actually is one, called unsafePerformIO , but its use is generally not
justified.

Well-Typed

Escaping temporarily

(>>=) :: IO a -> (a -> IO b) -> IO b

▶ Gives us access to the a that results from the first action.
▶ But wraps it all up in another IO action.

Well-Typed

Bind is the most general sequencing function

(>>) :: IO a -> IO b -> IO b
a1 >> a2 = a1 >>= \ _ -> a2

Or:

(>>) :: IO a -> IO b -> IO b
ioa >> iob = ioa >>= const iob

const :: a -> b -> a
const a b = a

Well-Typed

Bind is the most general sequencing function

(>>) :: IO a -> IO b -> IO b
a1 >> a2 = a1 >>= \ _ -> a2

Or:

(>>) :: IO a -> IO b -> IO b
ioa >> iob = ioa >>= const iob

const :: a -> b -> a
const a b = a

Well-Typed

Bind and return can implement lifting

liftM :: (a -> b) -> IO a -> IO b
liftM f ioa = ioa >>= \ a -> return (f a)

liftM2 :: (a -> b -> c) -> IO a -> IO b -> IO c
liftM2 f ioa iob =
ioa >>= \ a -> iob >>= \ b -> return (f a b)

Well-Typed

do notation

liftM2 :: (a -> b -> c) -> IO a -> IO b -> IO c

liftM2 f ioa iob =
ioa >>= \ a ->
iob >>= \ b ->
return (f a b)

liftM2 f ioa iob = do
a <- ioa
b <- iob
return (f a b)

Well-Typed

do notation

liftM2 :: (a -> b -> c) -> IO a -> IO b -> IO c

liftM2 f ioa iob =
ioa >>= \ a ->
iob >>= \ b ->
return (f a b)

liftM2 f ioa iob = do
a <- ioa
b <- iob
return (f a b)

Well-Typed

A larger example

greeting :: IO ()
greeting =
putStrLn "What is your name?" >>
getLine >>= \ name ->
putStrLn "Where do you live?" >>
getLine >>= \ loc ->
let
answer

| loc == "Regensburg" = "Fantastic!"
| otherwise = "Sorry, don't know that."

in
putStrLn answer

Well-Typed

A larger example

greeting :: IO ()
greeting = do
putStrLn "What is your name?"
name <- getLine
putStrLn "Where do you live?"
loc <- getLine
let
answer

| loc == "Regensburg" = "Fantastic!"
| otherwise = "Sorry, don't know that."

putStrLn answer

Well-Typed

More about do

A corner case is a single IO action:

helloWorld = do
putStrLn "Hello world"

is the same as writing

helloWorld =
putStrLn "Hello world"

Remember that a do is never required. It is just “syntactic sugar” for a
chain of (>>=) and (>>) applications.

Well-Typed

More about do

A corner case is a single IO action:

helloWorld = do
putStrLn "Hello world"

is the same as writing

helloWorld =
putStrLn "Hello world"

Remember that a do is never required. It is just “syntactic sugar” for a
chain of (>>=) and (>>) applications.

Well-Typed

Nested do

loop :: IO ()
loop = do
putStrLn "Type 'q' to quit."
c <- getChar -- reads a single character
if c == 'q'
then putStrLn "Goodbye"
else do
putStrLn "Here we go again ..."
loop

If we want to embed a sequence commands into a subexpression and
use do -notation for that, we need another do .

Note furthermore that there are lots of do blocks without return .

Well-Typed

Nested do

loop :: IO ()
loop = do
putStrLn "Type 'q' to quit."
c <- getChar -- reads a single character
if c == 'q'
then putStrLn "Goodbye"
else do
putStrLn "Here we go again ..."
loop

If we want to embed a sequence commands into a subexpression and
use do -notation for that, we need another do .

Note furthermore that there are lots of do blocks without return .

Well-Typed

About return

▶ The purpose of return in Haskell is to embed computations
into the IO type.

▶ As such, return can be used in many different places.
▶ It is fine to use return in the middle of a sequence of

commands. It does not jump anywhere.

This is fine:

do
n <- return 2
print n

Well-Typed

Functional programming with IO

Asking a question

ask :: String -> IO String
ask question = do
putStrLn question
getLine

GHCi> ask "What is your name?"
What is your name?
Andres
"Andres"

Well-Typed

Asking a question

ask :: String -> IO String
ask question = do
putStrLn question
getLine

GHCi> ask "What is your name?"
What is your name?
Andres
"Andres"

Well-Typed

Asking many questions

askMany :: [String] -> IO [String]
askMany [] = return []
askMany (q : qs) = do
answer <- ask q
answers <- askMany qs
return (answer : answers)

The standard design pattern on lists is back!

Well-Typed

Feels like a map

A map has the wrong result type:

askMany' :: [String] -> [IO String]
askMany' = map ask

But we can sequence a list of plans:

sequence :: [IO a] -> IO [a]
sequence [] = return []
sequence (x : xs) = do
a <- x
as <- sequence xs
return (a : as)

Well-Typed

Feels like a map

A map has the wrong result type:

askMany' :: [String] -> [IO String]
askMany' = map ask

But we can sequence a list of plans:

sequence :: [IO a] -> IO [a]
sequence [] = return []
sequence (x : xs) = do
a <- x
as <- sequence xs
return (a : as)

Well-Typed

Mapping an IO action

mapM :: (a -> IO b) -> [a] -> IO [b]
mapM f xs = sequence (map f xs)

askMany :: [String] -> IO [String]
askMany questions = mapM ask questions

Well-Typed

Mapping an IO action

mapM :: (a -> IO b) -> [a] -> IO [b]
mapM f xs = sequence (map f xs)

askMany :: [String] -> IO [String]
askMany questions = mapM ask questions

Well-Typed

Traversing a tree interactively

A tree of yes-no questions

data Interaction =
Question String Interaction Interaction

| Result String

Constructors:

Question ::
String
-> Interaction -> Interaction -> Interaction

Result :: String -> Interaction

Well-Typed

Pick a language

pick :: Interaction
pick =
Question "Do you like FP?"
(Question "Do you like static types?"
(Result "Try OCaml.")
(Result "Try Clojure.")

)
(Question "Do you like dynamic types?"
(Result "Try Python.")
(Result "Try Rust.")

)

Well-Typed

Pick a car

ford :: Interaction
ford =
Question "Would you like a car?"
(Question "Do you like it in black?"
(Result "Good for you.")
ford

)
(Result "Never mind then.")

Well-Typed

Asking a Boolean question

askBool :: String -> IO Bool
askBool question = do
putStrLn (question ++ " [yN]")
x <- getChar
putStrLn ""
return (x `elem` "yY")

Well-Typed

Traversing the tree interactively

interaction :: Interaction -> IO ()
interaction (Question q y n) = do
b <- askBool q
if b then interaction y else interaction n

interaction (Result r) = putStrLn r

Well-Typed

Traversing the tree non-interactively

simulate :: Interaction -> [Bool] -> Maybe String
simulate (Question _ y _) (True : bs) =
simulate y bs

simulate (Question _ _ n) (False : bs) =
simulate n bs

simulate (Result r) [] = Just r
simulate _ _ = Nothing

Well-Typed

Acquiring and releasing resources

Whole-file IO

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()

Well-Typed

Handle-based file IO

All in System.IO :

hGetLine :: Handle -> IO String
hPutStrLn :: Handle -> String -> IO ()
hIsEOF :: Handle -> IO Bool

withFile ::
FilePath -> IOMode
-> (Handle -> IO r) -- continuation (aka callback)
-> IO r

data IOMode =
ReadMode | WriteMode

| AppendMode | ReadWriteMode

Well-Typed

Handle-based file IO

All in System.IO :

hGetLine :: Handle -> IO String
hPutStrLn :: Handle -> String -> IO ()
hIsEOF :: Handle -> IO Bool

withFile ::
FilePath -> IOMode
-> (Handle -> IO r) -- continuation (aka callback)
-> IO r

data IOMode =
ReadMode | WriteMode

| AppendMode | ReadWriteMode

Well-Typed

Reading a file line by line

readFileLineByLine :: FilePath -> IO [String]
readFileLineByLine file =
withFile file ReadMode readFileHandle

readFileHandle :: Handle -> IO [String]
readFileHandle h = do
eof <- hIsEOF h
if eof
then return []
else do
line <- hGetLine h
lines <- readFileHandle h
return (line : lines)

Handle is automatically released at end of continuation.

Well-Typed

A word of warning

Warning

Both readFile and readFileLineByLine are actually
problematic for different reasons.
We will (probably) learn about better ways to process (in particular
large) files later this week.

Well-Typed

Exceptions

What happens if the file does not exist?

GHCi> readFileLineByLine "doesnotexist"
*** Exception: doesnotexist: openFile: does not exit
(No such file or directory)

Well-Typed

Exceptions in effectful vs effect-free code

Exceptions in pure code (via error , missing patterns, . . .) are bad:

▶ It is unclear when exactly, or if, they will be triggered,
▶ It is therefore also unclear where or when to best handle them,
▶ Explicitly handling failure via Maybe or similar is almost always

the better solution.

Exceptions in effectful (IO) code are different:

▶ Execution order is explicit, and handling is easier.
▶ There aremany things that go wrong.

Well-Typed

Exceptions in effectful vs effect-free code

Exceptions in pure code (via error , missing patterns, . . .) are bad:

▶ It is unclear when exactly, or if, they will be triggered,
▶ It is therefore also unclear where or when to best handle them,
▶ Explicitly handling failure via Maybe or similar is almost always

the better solution.

Exceptions in effectful (IO) code are different:

▶ Execution order is explicit, and handling is easier.
▶ There aremany things that go wrong.

Well-Typed

Catching IO errors

From System.IO.Error :

catchIOError :: IO a -> (IOError -> IO a) -> IO a

readFileLineByLine' ::
FilePath -> IO (Maybe [String])

readFileLineByLine' file =
catchIOError
(liftM Just (readFileLineByLine file))
(const (return Nothing))

Well-Typed

Catching IO errors

From System.IO.Error :

catchIOError :: IO a -> (IOError -> IO a) -> IO a

readFileLineByLine' ::
FilePath -> IO (Maybe [String])

readFileLineByLine' file =
catchIOError
(liftM Just (readFileLineByLine file))
(const (return Nothing))

Well-Typed

Testing it

GHCi> writeFile "test" "foo\nbar"
GHCi> readFileLineByLine' "test"
Just ["foo", "bar"]
GHCi> removeFile "test"
GHCi> readFileLineByLine' "test"
Nothing

From System.Directory :

removeFile :: FilePath -> IO ()

Well-Typed

Recap

▶ The role of the IO type.
▶ Composing IO functions.
▶ Higher-order IO functions (sequence , mapM).
▶ File IO.
▶ Resources.
▶ Exceptions.

Well-Typed

