
Part 6: Monads
Introduction to Haskell

Andres Löh
Copyright © 2021 Well-Typed LLP

Well-Typed
The Haskell Consultants

The plan

Let us look at a number of datatypes and typical programming
problems involving these types . . .

Well-Typed

Maybe

The Maybe type

data Maybe a = Nothing
| Just a

The Maybe datatype is often used to encode failure or an exceptional
value:

lookup :: (Eq a) => a -> [(a, b)] -> Maybe b
find :: (a -> Bool) -> [a] -> Maybe a

Well-Typed

Encoding exceptions using Maybe

Assume that we have a data structure with the following operations:

up, down, right :: Loc -> Maybe Loc
update :: (Int -> Int) -> Loc -> Loc

Given a location l1 , we want to move up, right, down, and update the
resulting position with using update (+ 1) . . .

Each of the steps can fail.

Well-Typed

Encoding exceptions using Maybe (contd.)

case up l1 of
Nothing -> Nothing
Just l2 -> case right l2 of
Nothing -> Nothing
Just l3 -> case down l3 of
Nothing -> Nothing
Just l4 -> Just (update (+ 1) l4)

Well-Typed

Encoding exceptions using Maybe (contd.)

case up l1 of
Nothing -> Nothing
Just l2 -> case right l2 of
Nothing -> Nothing
Just l3 -> case down l3 of
Nothing -> Nothing
Just l4 -> Just (update (+ 1) l4)

Well-Typed

Encoding exceptions using Maybe (contd.)

case up l1 of
Nothing -> Nothing
Just l2 -> case right l2 of
Nothing -> Nothing
Just l3 -> case down l3 of
Nothing -> Nothing
Just l4 -> Just (update (+ 1) l4)

In essence, we need
▶ a way to sequence function calls and use their results if successful
▶ a way tomodify or produce successful results.

Well-Typed

Encoding exceptions using Maybe (contd.)

case up l1 of
Nothing -> Nothing
Just l2 -> case right l2 of
Nothing -> Nothing
Just l3 -> case down l3 of
Nothing -> Nothing
Just l4 -> Just (update (+ 1) l4)

Sequencing:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
f >>= g = case f of

Nothing -> Nothing
Just x -> g x

Well-Typed

Encoding exceptions using Maybe (contd.)

up l1 >>=

\ l2 -> case right l2 of
Nothing -> Nothing
Just l3 -> case down l3 of
Nothing -> Nothing
Just l4 -> Just (update (+ 1) l4)

Sequencing:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
f >>= g = case f of

Nothing -> Nothing
Just x -> g x

Well-Typed

Encoding exceptions using Maybe (contd.)

up l1 >>=

\ l2 -> right l2 >>=

\ l3 -> case down l3 of
Nothing -> Nothing
Just l4 -> Just (update (+ 1) l4)

Sequencing:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
f >>= g = case f of

Nothing -> Nothing
Just x -> g x

Well-Typed

Encoding exceptions using Maybe (contd.)

up l1 >>=

\ l2 -> right l2 >>=

\ l3 -> down l3 >>=

\ l4 -> Just (update (+ 1) l4)
Sequencing:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
f >>= g = case f of

Nothing -> Nothing
Just x -> g x

Well-Typed

Sequencing and embedding

up l1 >>=
\ l2 -> right l2 >>=
\ l3 -> down l3 >>=
\ l4 -> Just (update (+ 1) l4)

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
f >>= g = case f of

Nothing -> Nothing
Just x -> g x

return :: a -> Maybe a
return x = Just x

(up l1) >>= right >>= down >>= return . update (+ 1)

Well-Typed

Sequencing and embedding

up l1 >>=
\ l2 -> right l2 >>=
\ l3 -> down l3 >>=
\ l4 -> return (update (+ 1) l4)

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
f >>= g = case f of

Nothing -> Nothing
Just x -> g x

return :: a -> Maybe a
return x = Just x

(up l1) >>= right >>= down >>= return . update (+ 1)

Well-Typed

Sequencing and embedding

up l1 >>=
\ l2 -> right l2 >>=
\ l3 -> down l3 >>=
\ l4 -> return (update (+ 1) l4)

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
f >>= g = case f of

Nothing -> Nothing
Just x -> g x

return :: a -> Maybe a
return x = Just x

(up l1) >>= right >>= down >>= return . update (+ 1)

Well-Typed

Observation

Code looks a bit like imperative code. Compare:

up l1 >>= \ l2 ->
right l2 >>= \ l3 ->
down l3 >>= \ l4 ->
return (update (+ 1) l4)

l2 := up l1;
l3 := right l2;
l4 := down l3;
return update (+ 1) l4

▶ In the imperative language, the occurrence of possible exceptions
is a side effect.

▶ Haskell is more explicit because we use the Maybe type and the
appropriate sequencing operation.

Well-Typed

A variation: Either

Compare the datatypes

data Either a b = Left a | Right b
data Maybe a = Nothing | Just a

The datatype Maybe can encode exceptional function results (i.e.,

failure), but no information can be associated with Nothing . We
cannot distinguish different kinds of errors.

Using Either , we can use Left to encode errors, and Right to
encode successful results.

Well-Typed

A variation: Either

Compare the datatypes

data Either a b = Left a | Right b
data Maybe a = Nothing | Just a

The datatype Maybe can encode exceptional function results (i.e.,

failure), but no information can be associated with Nothing . We
cannot distinguish different kinds of errors.

Using Either , we can use Left to encode errors, and Right to
encode successful results.

Well-Typed

A variation: Either

Compare the datatypes

data Either a b = Left a | Right b
data Maybe a = Nothing | Just a

The datatype Maybe can encode exceptional function results (i.e.,

failure), but no information can be associated with Nothing . We
cannot distinguish different kinds of errors.

Using Either , we can use Left to encode errors, and Right to
encode successful results.

Well-Typed

Sequencing and returning for Either

We can define variants of the operations for Maybe :

(>>=) :: Either Error a -> (a -> Either Error b)
-> Either Error b

f >>= g = case f of
Left e -> Left e
Right x -> g x

return :: a -> Either Error a
return x = Right x

Well-Typed

Simulating exceptions

We can abstract completely from the definition of the underlying
Either type if we define functions to throw and catch errors.

throwError :: e -> Either e a
throwError e = Left e

catchError :: Either e a -> -- computation
(e -> Either e a) -> -- handler
Either e a

catchError f handler = case f of
Left e -> handler e
Right x -> Right x

Well-Typed

Simulating exceptions

We can abstract completely from the definition of the underlying
Either type if we define functions to throw and catch errors.

throwError :: e -> Either e a
throwError e = Left e

catchError :: Either e a -> -- computation
(e -> Either e a) -> -- handler
Either e a

catchError f handler = case f of
Left e -> handler e
Right x -> Right x

Well-Typed

State

Maintaining state explicitly

▶ We pass state to a function as an argument.
▶ The function modifies the state and produces it as a result.
▶ If the function does anything except modifying the state, we must

return a tuple (or a special-purpose datatype with multiple fields).

This motivates the following type definition:

type State s a = s -> (a, s)

Well-Typed

Using state

There are many situations where maintaining state is useful:

▶ using a random number generator

type Random a = State StdGen a

▶ using a counter to generate unique labels

type Counter a = State Int a

▶ maintaining the complete current configuration of an application
(an interpreter, a game, . . .) using a user-defined datatype

data ProgramState = ...
type Program a = State ProgramState a

Well-Typed

Example: labelling the leaves of a tree

data Tree a = Leaf a | Node (Tree a) (Tree a)

labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) c = (Leaf (x, c), c + 1)
labelTree (Node l r) c1 = let (ll, c2) = labelTree l c1

(lr, c3) = labelTree r c2
in (Node ll lr, c3)

Well-Typed

Encoding state passing

\ s1 -> let (lvl , s2) = generateLevel s1
(lvl', s3) = generateStairs lvl s2
(ms , s4) = placeMonsters lvl' s3

in (combine lvl' ms, s4)

Well-Typed

Encoding state passing

\ s1 -> let (lvl , s2) = generateLevel s1
(lvl', s3) = generateStairs lvl s2
(ms , s4) = placeMonsters lvl' s3

in (combine lvl' ms, s4)

Well-Typed

Encoding state passing

\ s1 -> let (lvl , s2) = generateLevel s1
(lvl', s3) = generateStairs lvl s2
(ms , s4) = placeMonsters lvl' s3

in (combine lvl' ms, s4)

Again, we need
▶ a way to sequence function calls and use their results
▶ a way tomodify or produce successful results.

Well-Typed

Bind and return for state

\ s1 -> let (lvl , s2) = generateLevel s1
(lvl', s3) = generateStairs lvl s2
(ms , s4) = placeMonsters lvl' s3

in (combine lvl' ms, s4)

(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'

return :: a -> State s a
return x = \ s -> (x, s)

Well-Typed

Bind and return for state

generateLevel >>= \ lvl ->
\ s2 -> let (lvl', s3) = generateStairs lvl s2

(ms , s4) = placeMonsters lvl' s3
in (combine lvl' ms, s4)

(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'

return :: a -> State s a
return x = \ s -> (x, s)

Well-Typed

Bind and return for state

generateLevel >>= \ lvl ->
generateStairs lvl >>= \ lvl' ->

\ s3 -> let (ms , s4) = placeMonsters lvl' s3
in (combine lvl' ms, s4)

(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'

return :: a -> State s a
return x = \ s -> (x, s)

Well-Typed

Bind and return for state

generateLevel >>= \ lvl ->
generateStairs lvl >>= \ lvl' ->
placeMonsters lvl' >>= \ ms ->

\ s4 -> (combine lvl' ms, s4)

(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'

return :: a -> State s a
return x = \ s -> (x, s)

Well-Typed

Bind and return for state

generateLevel >>= \ lvl ->
generateStairs lvl >>= \ lvl' ->
placeMonsters lvl' >>= \ ms ->

return (combine lvl' ms)

(>>=) :: State s a -> (a -> State s b) -> State s b
f >>= g = \ s -> let (x, s') = f s in g x s'

return :: a -> State s a
return x = \ s -> (x, s)

Well-Typed

Observation

Again, the code looks a bit like imperative code. Compare:

generateLevel >>= \ lvl ->
generateStairs lvl >>= \ lvl' ->
placeMonsters lvl' >>= \ ms ->
return (combine lvl' ms)

lvl := generateLevel;
lvl' := generateStairs lvl;
ms := placeMonsters lvl';
return combine lvl' ms

▶ In the imperative language, the occurrence of memory updates
(random numbers) is a side effect.

▶ Haskell is more explicit because we use the State type and the
appropriate sequencing operation.

Well-Typed

“Primitive” operations for state handling

We can completely hide the implementation of State if we provide
the following two operations as an interface:

get :: State s s
get = \ s -> (s, s)

put :: s -> State s ()
put s = \ _ -> ((), s)

inc :: State Int ()
inc = get >>= \ s -> put (s + 1)

Well-Typed

Labelling a tree, revisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) c = (Leaf (x, c), c + 1)

labelTree (Node l r) c1 = let (ll, c2) = labelTree l c1
(lr, c3) = labelTree r c2

in (Node ll lr, c3)

The old version, with tedious explicit threading of the state.

Well-Typed

Labelling a tree, revisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = get >>= \ c ->

inc >> return (Leaf (x, c))
labelTree (Node l r) = labelTree l >>= \ ll ->

labelTree r >>= \ lr ->
return (Node ll lr)

New version, with implicit state passing, yet explicit sequencing.

(>>) :: State s a -> State s b -> State s b
x >> y = x >>= \ _ -> y

(The same definition as for IO . . .)

Well-Typed

List

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

map length
(concat (map words
(concat (map lines txts))

))

Embedding and sequencing for computations with many results
nondeterministic computations:

▶ Embedding: a computation with exactly one result.
▶ Sequencing: performing the second computation on all possible

results of the first one.

Well-Typed

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

map length
(concat (map words
(concat (map lines txts))

))

Embedding and sequencing for computations with many results
nondeterministic computations:

▶ Embedding: a computation with exactly one result.
▶ Sequencing: performing the second computation on all possible

results of the first one.

Well-Typed

Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

map length
(concat (map words
(concat (map lines txts))

))

Embedding and sequencing for computations with many results
nondeterministic computations:

▶ Embedding: a computation with exactly one result.
▶ Sequencing: performing the second computation on all possible

results of the first one.

Well-Typed

Defining bind and return for lists

(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)

return :: a -> [a]
return x = [x]

We have to use concat in (>>=) to flatten the list of lists.

Well-Typed

Using bind and return for lists

map length
(concat (map words
(concat (map lines txts))))

txts >>= \ t ->
lines t >>= \ l ->
words l >>= \ w ->
return (length w)

t := txts
l := lines t
w := words w
return length w

▶ Again, we have a similarity to imperative code.
▶ Imperative language: implicit nondeterminism.
▶ Haskell: explicit by using the list datatype and (>>=) .

Well-Typed

Using bind and return for lists

map length
(concat (map words
(concat (map lines txts))))

txts >>= \ t ->
lines t >>= \ l ->
words l >>= \ w ->
return (length w)

t := txts
l := lines t
w := words w
return length w

▶ Again, we have a similarity to imperative code.
▶ Imperative language: implicit nondeterminism.
▶ Haskell: explicit by using the list datatype and (>>=) .

Well-Typed

Using bind and return for lists

map length
(concat (map words
(concat (map lines txts))))

txts >>= \ t ->
lines t >>= \ l ->
words l >>= \ w ->
return (length w)

t := txts
l := lines t
w := words w
return length w

▶ Again, we have a similarity to imperative code.
▶ Imperative language: implicit nondeterminism.
▶ Haskell: explicit by using the list datatype and (>>=) .

Well-Typed

Intermediate Summary

At least four types with (>>=) and return :

▶ Maybe : (>>=) sequences operations that may fail and

shortcuts evaluation once failure occurs; return embeds a
function that never fails;

▶ State : (>>=) sequences operations that may modify some

state and threads the state through the operations; return
embeds a function that never modifies the state;

▶ [] : (>>=) sequences operations that may have multiple
results and executes subsequent operations for each of the
previous results; return embeds a function that only ever has
one result.

▶ IO : (>>=) sequences the side effects to the outside world,

and return embeds a function without any side effects.

There is a common interface here!

Well-Typed

Monads

Monad class

class Applicative m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

▶ The name “monad” is borrowed from category theory.
▶ A monad is an algebraic structure similar to amonoid.
▶ Monads have been popularized in functional programming via the

work of Moggi and Wadler.

Well-Typed

Instances

instance Monad Maybe where
...

instance Monad (Either e) where
...

instance Monad [] where
...

newtype State s a = State {runState :: s -> (a, s)}
instance Monad (State s) where
...

The newtype for State is required because Haskell does not allow

us to directly make a type s -> (a, s) an instance of Monad .
(Question: why not?)

Well-Typed

Instances

instance Monad Maybe where
...

instance Monad (Either e) where
...

instance Monad [] where
...

newtype State s a = State {runState :: s -> (a, s)}
instance Monad (State s) where
...

The newtype for State is required because Haskell does not allow

us to directly make a type s -> (a, s) an instance of Monad .
(Question: why not?)

Well-Typed

There are more monads

The types we have seen: Maybe , Either , [] , State , IO are
among the most frequently used monads – but there are many more
you will encounter sooner or later.

In fact, we have already seen one more! Which one?

The generators Gen from QuickCheck form a monad. You can see it
as an abstract state monad, allowing access to the state of a random
number generator.

Well-Typed

There are more monads

The types we have seen: Maybe , Either , [] , State , IO are
among the most frequently used monads – but there are many more
you will encounter sooner or later.

In fact, we have already seen one more! Which one?

The generators Gen from QuickCheck form a monad. You can see it
as an abstract state monad, allowing access to the state of a random
number generator.

Well-Typed

There are more monads

The types we have seen: Maybe , Either , [] , State , IO are
among the most frequently used monads – but there are many more
you will encounter sooner or later.

In fact, we have already seen one more! Which one?

The generators Gen from QuickCheck form a monad. You can see it
as an abstract state monad, allowing access to the state of a random
number generator.

Well-Typed

Monad laws

return is the unit of (>>=)

return a >>= f = f a
m >>= return = m

Associativity of (>>=)

(m >>= f) >>= g = m >>= (\ x -> f x >>= g)

Well-Typed

Monad laws for Maybe

return a >>= f
= { Definition of (>>=) }

case return a of
Nothing -> Nothing
Just x -> f x

= { Definition of return }
case Just a of
Nothing -> Nothing
Just x -> f x

= { case }
f a

Well-Typed

Monad laws for Maybe (contd.)

m >>= return
= { Definition of (>>=) }

case m of
Nothing -> Nothing
Just x -> return x

= { Definition of return }
case m of
Nothing -> Nothing
Just x -> Just x

= { case }
m

Well-Typed

Monad laws for Maybe (contd.)

Lemma

forall (f :: a -> Maybe b) . Nothing >>= f = Nothing

Proof

Nothing >>= f
= { Definition of (>>=) }

case Nothing of
Nothing -> Nothing
Just x -> f x

= { case }
Nothing

Well-Typed

Monad laws for Maybe (contd.)

(m >>= f) >>= g = m >>= (\ x -> f x >>= g)

Induction on m . Case m is Nothing :

(Nothing >>= f) >>= g
= { Lemma }

Nothing >>= g
= { Lemma }

Nothing
= { Lemma }

Nothing >>= (\ x -> f x >>= g)

Well-Typed

Monad laws for Maybe (contd.)

(Just y >>= f) >>= g
= { Definition of (>>=) }

(case Just y of
Nothing -> Nothing
Just x -> f x) >>= g

= { case }
f y >>= g

= { beta-expansion }
(\ x -> f x >>= g) y

= { case }
case Just y of
Nothing -> Nothing
Just x -> (\ x -> f x >>= g) x

= { definition of (>>=) }
Just y >>= (\ x -> f x >>= g)

Well-Typed

Additional monad operations

Class Monad contains two additional methods, but with default
methods:

class Monad m where
...
(>>) :: m a -> m b -> m b
m >> n = m >>= \ _ -> n

fail :: String -> m a
fail s = error s

While the presence of (>>) can be justified for efficiency reasons,

the presence of fail is often considered to be a design mistake.

Well-Typed

do notation

The do notation we have introduced when discussing IO is
available for all monads:

generateLevel >>= \ lvl ->
generateStairs lvl >>= \ lvl' ->
placeMonsters lvl' >>= \ ms ->
return (combine lvl' ms)

do
lvl <- generateLevel
lvl' <- generateStairs lvl
ms <- placeMonsters lvl'
return (combine lvl' ms)

Well-Typed

do notation – contd.

up l1 >>= \ l2 ->
right l2 >>= \ l3 ->
down l3 >>= \ l4 ->
return (update (+ 1) l4)

do
l2 <- up l1
l3 <- right l2
l4 <- down l3
return (update (+ 1) l4)

Well-Typed

Tree labelling, revisited once more

Using Control.Monad.State and do notation:

data Tree a = Leaf a | Node (Tree a) (Tree a)

labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = do
c <- get
put (c + 1) -- or modify (+ 1)
return (Leaf (x, c))

labelTree (Node l r) = do
ll <- labelTree l
lr <- labelTree r
return (Node ll lr)

How to get at the final tree?

Well-Typed

Running a stateful computation

evalState :: State s a -> s -> a

labelTreeFrom0 :: Tree a -> Tree (a, Int)
labelTreeFrom0 t = evalState (labelTree t) 0

There’s also

runState :: State s a -> s -> (a, s)

(which is just unpacking State ’s newtype wrapper).

Well-Typed

Running a stateful computation

evalState :: State s a -> s -> a

labelTreeFrom0 :: Tree a -> Tree (a, Int)
labelTreeFrom0 t = evalState (labelTree t) 0

There’s also

runState :: State s a -> s -> (a, s)

(which is just unpacking State ’s newtype wrapper).

Well-Typed

Running a stateful computation

evalState :: State s a -> s -> a

labelTreeFrom0 :: Tree a -> Tree (a, Int)
labelTreeFrom0 t = evalState (labelTree t) 0

There’s also

runState :: State s a -> s -> (a, s)

(which is just unpacking State ’s newtype wrapper).

Well-Typed

List comprehensions

map length
(concat (map words (concat (map lines txts))))

do
t <- txts
l <- lines t
w <- words l
return (length w)

Also list comprehensions:

[length w | t <- txts, l <- lines t, w <- words l]

Well-Typed

More on do notation (and list comprehensions)

▶ Use it, the special syntax is usually more concise.
▶ Never forget that it is just syntactic sugar. Use (>>=) and (>>)

directly when it is more convenient.

And some things I’ve already said about IO :

▶ Remember that return is just a normal function:
▶ Not every do -block ends with a return .
▶ return can be used in the middle of a do -block, and it doesn’t

“jump” anywhere.

▶ Not every monad computation has to be in a do -block. In
particular do e is the same as e .

▶ On the other hand, you may have to “repeat” the do in some
places, for instance in the branches of an if .

Well-Typed

More on do notation (and list comprehensions)

▶ Use it, the special syntax is usually more concise.
▶ Never forget that it is just syntactic sugar. Use (>>=) and (>>)

directly when it is more convenient.

And some things I’ve already said about IO :

▶ Remember that return is just a normal function:
▶ Not every do -block ends with a return .
▶ return can be used in the middle of a do -block, and it doesn’t

“jump” anywhere.

▶ Not every monad computation has to be in a do -block. In
particular do e is the same as e .

▶ On the other hand, you may have to “repeat” the do in some
places, for instance in the branches of an if .

Well-Typed

IO vs. other monads

The IO monad is special

▶ IO is a primitive type, and (>>=) and return for IO are
primitive functions,

▶ there is no (politically correct) function runIO :: IO a -> a ,
whereas for most other monads there is a corresponding
function, or at least some way to get an a out of the monad;

▶ values of IO a denote side-effecting programs that can be
executed by the run-time system.

Well-Typed

Effectful programming

▶ IO being special has little to do with it being a monad;
▶ you can use IO an functions on IO very much ignoring the

presence of the Monad class;
▶ IO is about allowing real side effects to occur; the other types

we have seen are entirely pure as far as Haskell is concerned,
even though they capture a form of effects.

Well-Typed

IO, internally

If you ask GHCi about IO by saying :i IO , you get

newtype IO a
= GHC.Types.IO (GHC.Prim.State# GHC.Prim.RealWorld

-> (# GHC.Prim.State# GHC.Prim.RealWorld, a #))
-- Defined in ‘GHC.Types ’

So internally, GHC models IO as a kind of state monad having the
“real world” as state!

Well-Typed

Monadic operations

The advantages of an abstract interface

Several advantages to identifying the “monad” interface:

▶ Have to learn fewer names. Same return and (>>=) (and

do notation) in many different situations.
▶ Useful derived functions that only use return and (>>=) . All

these library functions become automatically available for every
monad.

▶ There are many more monads than the ones we’ve discussed so
far. Monads can be combined to form new monads.

▶ Application-specific code often uses just the monadic interface
plus a few extra functions. As such, it is easy to switch the
underlying monad of a large part of a program in order to
accommodate a new aspect (error handling, logging,
backtracking, . . .).

Well-Typed

The advantages of an abstract interface

Several advantages to identifying the “monad” interface:

▶ Have to learn fewer names. Same return and (>>=) (and

do notation) in many different situations.
▶ Useful derived functions that only use return and (>>=) . All

these library functions become automatically available for every
monad.

▶ There are many more monads than the ones we’ve discussed so
far. Monads can be combined to form new monads.

▶ Application-specific code often uses just the monadic interface
plus a few extra functions. As such, it is easy to switch the
underlying monad of a large part of a program in order to
accommodate a new aspect (error handling, logging,
backtracking, . . .).

Well-Typed

Useful monad operations

liftM :: (a -> b) -> IO a -> IO b
mapM :: (a -> IO b) -> [a] -> IO [b]
mapM_ :: (a -> IO b) -> [a] -> IO ()
forM :: [a] -> (a -> IO b) -> IO [b]
forM_ :: [a] -> (a -> IO b) -> IO ()
sequence :: [IO a] -> IO [a]
sequence_ :: [IO a] -> IO ()
forever :: IO a -> IO b
filterM :: (a -> IO Bool) -> [a] -> IO [a]
replicateM :: Int -> IO a -> IO [a]
replicateM_ :: Int -> IO a -> IO ()
when :: Bool -> IO () -> IO ()
unless :: Bool -> IO () -> IO ()

Well-Typed

Useful monad operations

liftM :: Monad m => (a -> b) -> m a -> m b
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
forM :: Monad m => [a] -> (a -> m b) -> m [b]
forM_ :: Monad m => [a] -> (a -> m b) -> m ()
sequence :: Monad m => [m a] -> m [a]
sequence_ :: Monad m => [m a] -> m ()
forever :: Monad m => a -> m b
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
replicateM :: Monad m => Int -> m a -> m [a]
replicateM_ :: Monad m => Int -> m a -> m ()
when :: Monad m => Bool -> m () -> m ()
unless :: Monad m => Bool -> m () -> m ()

Well-Typed

Example: labelling a rose tree

data Rose a = Fork a [Rose a]

Each node has a (possibly empty) list of subtrees.

labelRose :: Rose a -> State Int (Rose (a, Int))
labelRose (Fork x cs) = do
c <- get
put (c + 1)
lcs <- mapM labelRose cs
return (Fork (x, c) lcs)

Well-Typed

Example: labelling a rose tree

data Rose a = Fork a [Rose a]

Each node has a (possibly empty) list of subtrees.

labelRose :: Rose a -> State Int (Rose (a, Int))
labelRose (Fork x cs) = do
c <- get
put (c + 1)
lcs <- mapM labelRose cs
return (Fork (x, c) lcs)

Well-Typed

Questions

What do you think these will evaluate to:

replicateM 2 [1 . . 3]
mapM return [1 . . 3]
sequence [[1, 2], [3, 4], [5, 6]]
mapM (flip lookup [(1, 'x'), (2, 'y'), (3, 'z')]) [1 . . 3]
mapM (flip lookup [(1, 'x'), (2, 'y'), (3, 'z')]) [1, 4, 3]
evalState (replicateM_ 5 (modify (+ 2)) >> get) 0

Well-Typed

About liftM and fmap

liftM :: (Monad m) => (a -> b) -> m a -> m b
fmap :: (Functor f) => (a -> b) -> f a -> f b

▶ Nearly same type as fmap , but a different class constraint.

▶ But every monad can be made an instance of Functor , by
defining fmap to be liftM .

▶ In practice, nearly all Haskell monads provide a Functor
instance. So you usually have liftM , fmap and (<$>)
available, all doing the same.

Well-Typed

A common pattern

Let’s once again look at tree labelling:

labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = do
c <- get
put (c + 1) -- or modify (+ 1)
return (Leaf (x, c))

labelTree (Node l r) = do
ll <- labelTree l
lr <- labelTree r
return (Node ll lr)

We are returning an application of (constructor) function Node to the
results of monadic computations.

Well-Typed

A common pattern (contd.)

do
r1 <- comp1
r2 <- comp2
...
rn <- compn
return (f r1 r2...rn)

This isn’t type correct:

f comp1 comp2...compn

But we can get close:

f <$> comp1 <*> comp2... <*> compn

Well-Typed

A common pattern (contd.)

do
r1 <- comp1
r2 <- comp2
...
rn <- compn
return (f r1 r2...rn)

This isn’t type correct:

f comp1 comp2...compn

But we can get close:

f <$> comp1 <*> comp2... <*> compn

Well-Typed

A common pattern (contd.)

do
r1 <- comp1
r2 <- comp2
...
rn <- compn
return (f r1 r2...rn)

This isn’t type correct:

f comp1 comp2...compn

But we can get close:

f <$> comp1 <*> comp2... <*> compn

Well-Typed

Monadic application

We need a function that’s like function application, but works on
monadic values:

ap :: Monad m => m (a -> b) -> m a -> m b
ap mf mx = do
f <- mf
x <- mx
return (f x)

Types supporting return and ap have their own name:

class Functor f => Applicative f where
pure :: a -> f a -- like return
(<*>) :: f (a -> b) -> f a -> f b -- like ap

Well-Typed

Monadic application

We need a function that’s like function application, but works on
monadic values:

ap :: Monad m => m (a -> b) -> m a -> m b
ap mf mx = do
f <- mf
x <- mx
return (f x)

Types supporting return and ap have their own name:

class Functor f => Applicative f where
pure :: a -> f a -- like return
(<*>) :: f (a -> b) -> f a -> f b -- like ap

Well-Typed

Functor and Applicative in terms of Monad

instance Monad T where ...

Requires superclass instances for Functor and Applicative :

instance Functor T where
fmap = liftM

instance Applicative T where
pure = return
(<*>) = ap

Well-Typed

Example

labelTree :: Tree a -> State Int (Tree (a, Int))
labelTree (Leaf x) = do
c <- get
put (c + 1) -- or modify (+ 1)
return (Leaf (x, c))

labelTree (Node l r) =
Node <$> labelTree l <*> labelTree r

Exercise: Convince yourself that this is type correct.

Well-Typed

Lessons

▶ The abstraction of monads is useful for a multitude of different
types.

▶ Monads can be seen as tagging computations with effects.
▶ While IO is impure and cannot be defined in Haskell, the other

effects we have seen can be modelled in a pure way:
▶ exceptions via Maybe or Either ;
▶ state via State ;
▶ nondeterminism via [] .

▶ The monad interface offers a large number of useful abstractions
that can all be applied to these different scenarios.

▶ All monads are also applicative functors and in particular
functors. The (<$>) and (<*>) operations are also useful for
structuring effectful code in Haskell.

Well-Typed

