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Type inference

▶ The compiler will infer types for expressions, and for constant and
function declarations automatically. Type annotations are rarely
required.

▶ Type annotations can always be provided and will be checked for
correctness by the compiler.

▶ Type signatures for top-level declarations are considered good
style. They serve as invaluable machine-checked interface
documentation.

▶ You can use GHC(i) to obtain inferred types. Use :t often, but
also try to train your own type inference capabilities over time – it
will help you to understand errors with less effort.
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Parametric polymorphism



One function, several types

Some Haskell expressions and functions can have more than one type.

Example:

fst (x, y) = x

Possible type signatures (all would work):

fst :: (a, a) -> a
fst :: (Int, a) -> Int
fst :: (Int, Int) -> Int
fst :: (a, b) -> a
fst :: (Int, Char) -> Int

Is one of these clearly the “best” choice?
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Most general type

Haskell’s type system is designed such that (ignoring some language
extensions) each term has amost general type:

▶ the most general type allows the most flexible use;
▶ all other types the term has can be obtained by instantiating the

most general type, i.e., by substituting type variables with type
expressions.
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Instantiating types

The type signature

fst :: (a, b) -> a

declares the most general type for fst . Types like

fst :: (a, a) -> a
fst :: (Int, Char) -> Int
fst :: (a -> Int -> b, c) -> a -> Int -> b

are instantiations of the most general type.

Type inference will always infer the most general type!

(So sometimes it’s worth asking GHC about the inferred type of a
function, even if you started by providing a type signature, and you
might be surprised that the inferred type is more general than what
you had specified.)
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No run-time type information

Haskell terms carry no type information at run-time.

Remember

You can only ever use a term in the ways its type dictates.

Example:

fst :: (a, b) -> a
fst (x, y) = x

restrictedFst :: (Int, Int) -> Int
restrictedFst = fst -- ok

newFst :: (a, b) -> a
newFst = restrictedFst -- type error!
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Parametric polymorphism

▶ A type with type variables (but no class constraints) is called
(parametrically) polymorphic.

▶ Type variables can be instantiated to any type expression, but
several occurrences of the same variable have to be the same
type.

▶ If a function argument has polymorphic type, then you know
nothing about it. No pattern matching is possible. You can only
pass it on.

▶ If a function result has polymorphic type, then (except for
undefined and error ) you can only try to build one from the
function arguments.

Let us look at examples.
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Example

How many functions can you think of that have this type:

(Int, Int) -> (Int, Int)

And of this one?

(a, a) -> (a, a)

And of this one?

(a, b) -> (b, a)

(Thanks to Doaitse Swierstra for the example.)
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Parametricity

▶ In general, parametric polymorphism severely restricts how a
function can be implemented.

▶ So if the functionality you’re trying to implement is quite general,
this is a good thing, because it really prevents you from making
errors.

▶ Conversely, if you see a function with parametrically polymorphic
type, you know that it cannot look at the polymorphic values.

▶ By looking at polymorphic types alone, one can obtain non-trivial
properties of the functions. (This is sometimes called
“parametricity”.)

▶ For example, map :: (a -> b) -> [a] -> [b] must produce
a list in which all elements are obtained by applying the given
function to elements of the original list – but we don’t know how
long the resulting list is, or in which order the elements occur.
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A common pitfall: who gets to choose

Sometimes, it may be tempting to write a program like the following:

parse :: String -> a
parse "False" = False
parse "0" = 0
...

What is wrong here?

For polymorphic types, it is always the caller who gets to choose at
which type the function should be used.

A function with polymorphic result type (but no polymorphic
arguments) is impossible to write without either looping or causing an
exception: we’d have to produce a value that belongs to every type
imaginable!
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What if we need to return values of different types?

Option 1: use Either :

data Either a b = Left a | Right b

parse :: String -> Either Bool Int
parse "False" = Left False
parse "0" = Right 0

Option 2: define your own datatype.

data Value = VBool Bool | VInt Int

parse :: String -> Value
parse "False" = VBool False
parse "0" = VInt 0

The second option is quite common in libraries that interface with
dynamically typed languages (SQL, JSON, . . .).
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Overloading



Reusing code, reusing names

Parametric polymorphism

Allows you to use the same implementation in as many contexts as
possible.

Overloading (ad-hoc polymorphism)

Allows you to use the same function name in different contexts, but
with different implementations for different types.
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Type classes

A type class defines an interface that can be implemented by
potentially many different types.

Example:

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

Using instance declarations, we can explain how a certain type (or
types of a certain shape) implement the interface.
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Instances

instance Eq Bool where
False == False = True
True == True = True
_ == _ = False

x /= y = not (x == y)

instance Eq a => Eq [a] where
[] == [] = True
(x : xs) == (y : ys) = x == y && xs == ys
_ == _ = False

xs /= ys = not (xs == ys)

We use equality on a while defining equality on [a] .
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Class constraints

All the instances of a given type class specify a subset of all the Haskell
types, namely the subset that implements the class interface.

In type signatures, class constraints specify that a type variable can
only be instantiated to types belonging to a certain class:

(==) :: Eq a => a -> a -> Bool

Read: “Given that a is an instance of Eq , the function has the type

a -> a -> Bool .”
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Overloading and inference

Not only class methods, but also functions that directly or indirectly
use class methods can have types with constraints. Example:

allEqual :: Eq a => [a] -> Bool
allEqual [] = True
allEqual [x] = True
allEqual (x : y : ys) = x == y && allEqual (y : ys)

Also recall elem or lookup .

Class constraints will be automatically inferred by the compiler.
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Several class constraints

There can be multiple constraints on a function, and they can apply to
several variables:

example ::
... => (a, b) -> (a, b) -> String

example (x1, y1) (x2, y2)
| x1 == x2 && y1 == y2 = show x1
| otherwise = "different"

Can you infer the constraints?
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Several class constraints

There can be multiple constraints on a function, and they can apply to
several variables:

example ::
(Eq a, Eq b, Show a) => (a, b) -> (a, b) -> String

example (x1, y1) (x2, y2)
| x1 == x2 && y1 == y2 = show x1
| otherwise = "different"

Can you infer the constraints?
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Default definitions

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

x == y = not (x /= y)
x /= y = not (x == y)

Now:

instance Eq Bool where
False == False = True
True == True = True
_ == _ = False

And (/=) will work automatically.

Careful: if you provide neither (==) nor (/=) , you won’t get a
complaint, but both functions will loop.
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Classes are not types!

Note that

f :: Eq -> Eq -> Bool
f :: Eq a -> Eq a -> Bool

are both invalid. Classes appear in constraints!

Also note that the type

Eq a => a -> a -> Bool

forces both arguments to be of the same type. You cannot pass two
different types that are both an instance of Eq – that would require a
function of type

(Eq a, Eq b) => a -> b -> Bool
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Important classes



Eq

▶ For equality and inequality.
▶ Note that equality in Haskell is structural equality. There is no

“object identity”, and no pointer equality.
▶ Supported by most datatypes, such as numbers, characters,

tuples, lists, Maybe , Either , . . .
▶ Not supported for function types.
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Ord

For comparisons between values of the same type.

class Eq a => Ord a where
compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
max :: a -> a -> a
min :: a -> a -> a

Several default definitions – you’d typically define just compare or

(<=) .

data Ordering = LT | EQ | GT
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Superclasses

class Eq a => Ord a where
...

The condition indicates that Eq is a superclass of Ord :

▶ You cannot give an instance for Ord without first providing an
instance to Eq .

▶ Conversely, a constraint Ord a => ... on a function implies
Eq a . In other words, (Ord a, Eq a) => ... is equivalent to

Ord a => ... .
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Overloading vs. parameterization

Consider:

sort :: Ord a => [a] -> [a]
sortBy :: (a -> a -> Ordering) -> [a] -> [a]

Both functions are rather similar:

▶ the first takes the comparison function to use from the
instance declaration for the element type of the list;

▶ the second is passed an explicit comparison function.

Using an overloaded function is a bit more convenient, but using
sortBy is a bit more flexible.

Interestingly, GHC implements overloaded functions by passing type
class “dictionaries” as additional arguments.
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Excursion: performance impact of overloading

▶ You pay no price whatsoever for parametric polymorphism.
▶ Overloaded functions get extra arguments at runtime. There is a

slight performance penalty for that.
▶ Only overloaded functions get extra arguments – remember that

there is no general run-time type information!
▶ It is possible to instruct GHC to generate specialized versions for

overloaded functions at particular types, thereby eliminating the
run-time overhead.

▶ GHC also has a relatively aggressive inliner. Inlining overloaded
functions can also remove the overhead, much like specialization.
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Show

class Show a where
show :: a -> String
showsPrec :: Int -> a -> ShowS
showList :: [a] -> ShowS

The most important method is show :

▶ used to produce a human-readable String -representation of a
value;

▶ it is sufficient to define show in new instances, as the others
have default definitions;

▶ the other two functions can be used to more efficiently and
beautifully implement show internally (for example, remove
unnecessary parentheses);

▶ also used by GHCi to print result values of evaluated terms;
▶ once again, function types are not an instance.
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Read

class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]

Most often, the derived function read is used:

read :: Read a => String -> a

Tries to interpret a given String (such as produced by show ) as a
value of a type.

How the value is interpreted is statically determined by the context:

read "1" + 2 -- used as a number, parsed as a number
not (read "False") -- used as a Bool , parsed as a Bool
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Unresolved overloading

The following function produces an error (not in GHCi, but if placed in a
file):

strange x = show (read x)

The error will say something about an “ambiguous type variable” and
mention constraints for Read and Show .

Can you imagine what the problem is?

The x is a String which is then parsed into something by read .
But what type should it be parsed at? The context does not tell,
because the result is passed to Show , which is also overloaded.
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Manually resolving overloading

This works:

strange :: String -> String
strange x = show (read x :: Bool)

Or this:

strange :: String -> String
strange x = show (read x :: Int)

But note that the choice of intermediate type does make a difference!

In general, if several overloaded functions are combined such that the
resulting type does not mention any overloaded variables anymore,
you have to specify the intermediate types manually to help the type
checker resolve the overloading.
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deriving

For a limited number of type classes (but in particular Eq , Ord ,

Show , Read ), the Haskell compiler has a built-in algorithm to derive
an instance for nearly any datatype.

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving (Eq, Ord, Show, Read)

Defines the Tree datatype of binary trees together with suitable
instances:

▶ equality is always deep and structural;
▶ ordering depends on the order of constructors;
▶ Show and Read assume the natural human-readable Haskell

string representation.
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Type classes on type constructors



Generic concepts

Some of the concepts we have seen are not specific to lists; for
example:

▶ the function foldr replaces data constructors by suitable
functions and follows the structure of the datatype, just like the
standard design principle;

▶ the function elem traverses a data structure and checks
whether it contains a particular element;

▶ the function filter traverses a data structure and produces a
substructure containing just the elements with a certain property;

▶ the function map traverses a data structure and produces a new
structure of the same shape, but with modified elements.

For some of these concepts, Haskell therefore offers more type classes.
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Foldable

A class for data structures that can be viewed as a list, i.e., that have
elements in some natural order.

class Foldable t where
foldr :: (a -> b -> b) -> b -> t a -> b
foldl' :: (b -> b -> b) -> b -> t a -> b
toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
product :: Num a => t a -> a
...

Some of these are only available via Data.Foldable .

Note that Foldable abstracts over a parameterized type t .
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Other foldable types

The Maybe type is a container with 0 or 1 elements:

GHCi> null (Just 3)
False
GHCi> null Nothing
True
GHCi> product Nothing
1
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Possible pitfall: foldable tuples and Either

A pair is a container containing exactly 1 element (its second
component). (Tagged value.)

GHCi> toList (3, 4)
[4]
GHCi> toList ("foo", True)
[True]
GHCi> sum (3, 4)
4

An Either is like Maybe where Nothing is replaced by Left .

So Right injects an element, Left does not.

GHCi> length (Right 3)
1
GHCi> length (Left 3)
0
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Mapping over other types

data Tree a = Leaf a | Node (Tree a) (Tree a)

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node l r) = Node (mapTree f l) (mapTree f r)

data Maybe a = Nothing | Just a

mapMaybe :: (a -> b) -> Maybe a -> Maybe b
mapMaybe f Nothing = Nothing
mapMaybe f (Just x) = Just (f x)
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The Functor class

class Functor f where
fmap :: (a -> b) -> f a -> f b

Like Foldable , the class Functor abstracts over a parameterized
type.

instance Functor [] where
fmap = map

instance Functor Tree where
fmap = mapTree

instance Functor Maybe where
fmap = mapMaybe

(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x -- just a different name
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Deriving Functor and Foldable

Class instances for Functor and Foldable (and a few other
classes) can be derived via language extensions:

{-# LANGUAGE DeriveFunctor, DeriveFoldable #-}

Language pragmas have to appear at the top of the module.

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving (Show, Eq, Functor, Foldable)

GHCi> length (Node (Leaf 3) (Leaf 4))
2
GHCi> (+ 1) <$> Node (Leaf 3) (Leaf 4)
Node (Leaf 4) (Leaf 5)
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Numbers



Numeric types and classes

There are several numeric types and classes in Haskell:

type instance of

Int Num Integral
Integer Num Integral
Float Num Fractional Floating RealFrac
Double Num Fractional Floating RealFrac
Rational Num Fractional

The class Num is a superclass of Integral .

The class Fractional is a superclass of Floating .

▶ Whereas Int is bounded, Integer is unbounded (bounded
by memory only).

▶ A Double is usually of higher precision than a Float .
▶ The datatype Rational is for fractions.
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There are several numeric types and classes in Haskell:

type instance of

Int Num Integral
Integer Num Integral
Float Num Fractional Floating RealFrac
Double Num Fractional Floating RealFrac
Rational Num Fractional

The class Num is a superclass of Integral .
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Operations on numbers

Most operations on numbers and even numeric literals are
overloaded:
(+) :: (Num a) => a -> a -> a
(-) :: (Num a) => a -> a -> a
(*) :: (Num a) => a -> a -> a

1 :: (Num a) => a -- overloaded literals
1.2 :: (Fractional a) => a -- overloaded literals

(/) :: (Fractional a) => a -> a -> a

mod :: (Integral a) => a -> a -> a
div :: (Integral a) => a -> a -> a

sin :: (Floating a) => a -> a
log :: (Floating a) => a -> a

Well-Typed
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No automatic coercion

We can use overloaded functions at different types:

3 * 4
3.2 * 4.5

But there is no implicit coercion:

3.2 * (5 `div` 2) -- type error
3.2 * fromIntegral (5 `div` 2)

Question

Why is 3.2 * 2 ok, but not 3.2 * (5 `div` 2) ?

Because 2 :: (Num a) => a , but

(5 `div` 2) :: (Integral a) => a .

Well-Typed
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Converting between numeric types

From an integral type to another:

fromIntegral :: (Integral a, Num b) => a -> b

From a fractional type to an integral:

round :: (RealFrac a, Integral b) => a -> b
floor :: (RealFrac a, Integral b) => a -> b
ceiling :: (RealFrac a, Integral b) => a -> b

Here, round rounds to the nearest even number.

Well-Typed


